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About

At first glance, this document may look like a scientific one, but it is not meant to be 
one. It is meant for the technically inclined model-airplane flier who wants to know 
more about the characteristics of different electric drives (and different models, for 
that matter) – more than he can else know without having and just trying them all in 
the first place. Eventually, it just describes how the calculation spreadsheets work.

In the first instance though, it defines all equations needed to represent an electric 
drive and derives the basic solution as prerequisites. This is meant for those seriously 
inclined  to  understand  how the  calculation  works.  Of  course,  some technical  and 
mathematical understanding or even expertise will help but should not be required. At 
least there are only very simple differential equations and no integral equations, just 
plain algebra.

It should be even possible to skip the derivations and explanations and just go to the 
description of workflow and calculation tools. At least the illustrations might be inter-
esting, though. They start with a discussion of characteristics by deriving even more 
equations, but it changes into showing diagrams and characteristic values for practical 
examples.

Many definitions, lengthy explanations and derivations may contribute to a “scientific” 
look. But that and the phrasing are not meant to teach the reader but just to inform 
him how the spreadsheet calculations have been contrived and how to interpret them.

Any personal  pronoun is  avoided and “we” is  solely  used in  the sense of  Pluralis 
Modestiae or Pluralis Auctoris (plural of modesty or author’s plural, do not seem to be 
common in today’s English), but in no case as Pluralis Majestatis (royal “we”). There 
should be no vowel omissions, no abbreviations, and no jargon either. However, that 
is all part of a quest for completeness, correctness, and conciseness.

The fonts are chosen for good on-screen readability. The pages may be displayed to 
fit the screen, in original size, or even enlarged – they should be easily readable in 
any case.

Reading this document on a display screen may be convenient because it  can be 
searched for text strings, because there are some links to external documents in the 
World Wide Web, and because there are bookmarks to the chapters and sections on 
the left margin as well as links to pages in the text. Moreover, related illustrating dia-
grams are equally placed on consecutive pages so they are easily compared by tog-
gling between these pages.

Nevertheless, this document is well suited to printing on common DIN A4 paper with a 
monochrome printer. For the illustrating diagrams and pictures, a color printer would 
be better suited, though.



Analyzing Electric Model-Airplane Drives Introduction

Introduction

This paper explains how common spreadsheet tools like Microsoft® Office® Excel® or 
the free alternative LibreOffice Calc may be used to estimate the characteristics of an 
electric model-airplane drive. (It has been itself created and converted to PDF format 
with LibreOffice Writer, Math, and Draw.)

Using the word “estimate” is well-considered. No attempt is made to calculate the 
drive characteristics exactly or comprehensively. Quite the contrary, every possible 
simplification is used to define models and equations. There's nothing unusual about 
that since these simplifications are commonly used and their suitability is proven.

The achievable accuracy turns out to be well sufficient for the intended purpose. It's 
not about designing a drive optimized for a certain model but about composing a suit-
able drive from readily available components. These components – propeller, gear, 
motor, speed controller, and battery – are offered in various versions, sizes, and con-
figurations. The point is that there are scales with certain value steps for the main 
features of drive components so there are only a few reasonable configurations in 
each case.

Propellers are offered in different kinds (sport, electric, parkflyer) as well as certain 
combinations of diameter and pitch. Electric motors come in certain combinations of 
power and specific speed (kV). Both speed controllers and batteries just have to match 
the voltage (cell type and count), amperage, and capacity requirements of the chosen 
drive. In case a reduction gear is wanted there are usually very few choices.

Model-airplane manufacturers recommend a few reasonable motor/prop/battery com-
binations. And electric motor manufacturers recommend a few applications for each 
motor, meaning a class and weight of model as well as prop and battery. That all  
means that usually there are quite few choices of complete drives to be considered.

So using the word “analyzing” (electric drives) is well-considered as well. There is no 
way to put some desired parameters in and “calculate” the best-suited drive for a 
model. The only way to find it is comparing a few promising configurations, maybe 
recommended by the model manufacturer or by the motor manufacturer, or even self-
chosen to give the model different characters.

The manufacturer's recommendations will usually give a typical or “mainstream” drive 
and model  character,  but for  instance less  power but longer flight  time might be 
wanted, or a drive optimized for cruise flight instead of climb.  Different motors and 
propellers are mere interchangeable  modules of  the whole  calculation and can be 
checked for their suitability.

Usually, several characteristics are not exactly as specified or calculated. For instance, 
the field strength sample strew of the motor magnets is said to be about 10%, making 
for correspondingly differing kV values. Once actual values of a real drive at hand can 
be measured, the whole drive calculation can be calibrated (“tweaked”) to a good 
degree of accuracy (only a few percent error in the best case).

Since this is possible only after buying the drive, it is usually done just in edge cases, 
for instance before the maiden flight of a marginally powered airplane. Another impor-
tant use case (which was the actual reason to develop the calculations described here) 
would be “building” a true-to-original simulator model. And nowadays,  yet another 
useful application is ascertaining optimal power settings and flight speeds for cruise 
and climb, respectively, which can’t be implemented by visual and audible impression 
but by appropriate telemetry in the model.
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Definitions

Units

Any specification of units is enclosed in brackets [].

Dimensionless variables are marked with a null unit [-].

For convenience (no conversions), only coherent metric (SI) units are used.

Exception is rotational speed, which is specified as rpm [min-1] – as usual – instead of 
angular speed ω in radians per second [rad/s]. Hence the conversion multiplier 2π/60 
is needed in some equations (2π radians per rotation, 60 seconds per minute).

No exception is made for efficiencies, which are often specified in [%] but are treated 
here as dimensionless ratios between 0 and 1 with a null unit [-].

Four natural unit conversions are used here, two mechanical and two electrical:
[N]=[kg·m/s2]   and   [W]=[N·m/s] [A]=[V/Ω]   and   [W]=[V·A]

These conversions may be substituted and rearranged like ordinary equations.

Variables

Rb [Ω] resistance (impedance) of the battery
Re [Ω] resistance (impedance) of controller (ESC), cables, and connectors
Rm [Ω] resistance (impedance) of the motor
R [Ω] resistance (impedance) of the whole system (total)

Ub [V] internal (no current) voltage of the battery
Ue [V] mean terminal voltage of the ESC as delivered to the motor
Umi [V] mutual induction voltage of the rotating motor

I [A] actual current
Ist [A] stall current (rotor locked)
I0m [A] idle current (no load) due to motor friction
I0g [A] idle current (no load) due to gear friction

Mp [N·m] actual propeller moment (torque)
Mg [N·m] actual gear (propeller) shaft moment (torque)
Mm [N·m] actual motor shaft moment (external torque)
Mst [N·m] motor stall moment (total torque with rotor locked)
M0m [N·m] motor idle moment (internal friction torque, constant)
M0g [N·m] gear idle moment (internal friction torque, constant)

n [s-1] actual drive speed (propeller revolutions per second)
np [min-1] actual propeller speed (revolutions per minute)
ng [min-1] actual gear output (propeller) shaft speed
nm [min-1] actual gear input (motor) shaft speed
n0 [min-1] drive idle (no-load) speed
n0g [min-1] gear shaft (drive) idle (no-load) speed
n0m [min-1] motor shaft idle (no-load) speed

2
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Analyzing Electric Model-Airplane Drives Definitions

Pthrust [W] actual propeller (output) thrust (propulsive) power
Pshaft [W] actual propeller (input) shaft power
Pmech [W] actual gear output (shaft) mechanical power
Pm [W] actual motor output (shaft) mechanical power
Pel [W] actual system input (battery) electric power

η [-] total system efficiency (“eta”, drive and propeller)
ηm [-] motor efficiency (including battery and ESC)
ηg [-] gear efficiency
ηp [-] propeller efficiency
ηd [-] drive efficiency (motor and gear)

kV [min-1/V] specific rotational speed (rpm per Volt)
kA [A/min-1] specific current (Ampere per rpm, negative value)
kM [N·m/A] specific moment (torque per Ampere)

ig [-] gear reduction ratio (e.g. 4.4 for a 4.4:1 gear)

In Mechanical-Aerodynamic Conversion and Propeller Illustration:
D [m] propeller diameter
R [m] propeller radius
r [m] propeller local radius
c [m] propeller local blade chord
β [°] propeller local twist angle (“beta”)
φ [°] propeller local advance angle (“phi”)
α [°] propeller local angle-of-attack (“alpha”)
H [m] propeller local pitch
Hn [m] propeller nominal pitch
v [m/s] flight speed (airspeed)
Δv [m/s] added speed (slipstream speed, see page 54)
J [-] propeller advance ratio
Ji [-] induced advance ratio (see page 55)
λ [-] advance ratio, alternative definition (“lambda”, see page 9)
cT [-] propeller thrust coefficient
cM [-] propeller moment (torque) coefficient
cP [-] propeller power coefficient
T [N] propeller thrust
η [-] propeller efficiency (“eta”)
η* [-] propulsion efficiency (see page 55)
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Constants

g [kg·m/s2] gravity acceleration (standard is 9.81)
ρ [kg/m3] density of air (“rho”, standard is 1.226)
ν [m2/s] kinematic viscosity of air (“nue”, standard is 0.00001464)
c [m/s] speed of sound in air (standard is 343.2)
π [-] number “pi” (3.14159)

Transformations

Specific motor moment (torque) kM is simply specific speed kV transformed, as well as 
propeller moment coefficient cM is simply power coefficient cP transformed:

k M = 60
2⋅π⋅k V

(see page 10)

cM =
cP

2⋅π
(see page 9)

Inconsistencies

The propeller’s rotational speed n has the unit [s-1], not [min-1]. That is due to the tool 
used for calculating the propeller coefficients, which requires this unit for the way the 
coefficients and the advance ratio are defined.

In the chapter Basic Solution, in the sections following Specific Speed/Moment, all ro-
tational speeds are assumed to have this unit. That is not consistent with the defini-
tions above. In the section Mechanical-Aerodynamic Conversion,  n in [s-1] is consis-
tently used, though.
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Simplified Drive Model

Modeling the drive means defining equations which describe it's behavior. As usual, 
one may discern two steps of modeling: abstraction and relaxation. In the first step – 
abstraction – all aspects relevant to the task are identified and all others are omitted. 
Usually there is still no way to draft equations, so in the second step – relaxation – 
even relevant aspects are omitted or at least rendered simpler than they really are. 
Relaxation is carried as far as necessary to find a solution in equation form.

Generic Drive Model

So we start by defining an abstract, generic model of a whole drive. The first relevant 
aspect is to compose the drive from common interchangeable components:

Each component is seen as a “black box” with interfaces to other components. The 
electrical and/or mechanical properties constitute a component’s behavior at these in-
terfaces, which has to be described in equation form.

The battery may have various numbers of cells, various capacities as well as loads (C 
rate), and various cell types (voltages). This is simply described as particular values of 
corresponding variables, for instance a 5s1p 5000 mAh 30C LiPo battery.

The  ESC (electronic speed controller) has to match the type of motor (brushed or 
brushless), it's size (power), and the battery’s voltage. It feeds the motor with varying 
electric power. For convenience, connectors and cables are assigned to the ESC.

The motor converts electrical to mechanical power. It may be brushed or brushless, 
inrunner or outrunner, and have various speeds and sizes/power.

The gear transforms the mechanical power to different rpm and torque. It may be a 
spur/ring/planetary gear, and have various transmission ratios, sizes, and efficiencies.

Finally, the prop converts the mechanical power to aerodynamic thrust and torque. 
There are different shapes and number of blades, diameter and pitch, and folding.

5

ESC M

+

- G

PB

Battery
Connectors and Cables
Electronic Speed Controller
Connectors and Cables
Motor
Gear
Propeller

C C



Analyzing Electric Model-Airplane Drives Simplified Drive Model

Electrical-Mechanical Conversion

Electromechanical systems are modeled in the form of an equivalent circuit diagram. 
It specifies the system’s characteristics and their interrelations.

Model-airplane motors are  permanent-magnet DC motors, and a  brushless motor is 
essentially  the same, just  with the mechanical  commutator  (collector/brushes) re-
placed by the ESC. (The links lead to Wikipedia.) That is why there is only one coil 
with two lines in the diagram's motor symbol, and why it is a DC circuit diagram. All  
effects of alternating and pulsing current are neglected or replaced by resistances, re-
spectively. That is a very useful and still acceptable simplification.

The battery provides an “internal” voltage, which depends on type and number of 
cells. We use the standard or nominal voltage of the cell type at hand, that is 3.7 V for 
LiPo, 3.3 V for LiFePo, and 1.2 V for NiMH or NiCd. According to Ohm’s law, the bat-
tery’s terminal voltage is lower than the internal voltage while any current is flowing 
because there is some (complex) internal impedance in a battery, here replaced by a 
simple (constant) resistor:

UbT = U b− Rb⋅I

The ESC reduces the voltage as well due to its internal resistance, which includes all 
connector and cable resistances in our simplified model. Beyond that, its “throttle” 
function is seen here simply as further reduction of (mean) voltage. At WOT (wide 
open throttle), the ESC delivers a slightly reduced voltage to the motor:

U e = U bT − Re⋅I

Of course, also the motor has an ohmic resistance, which is a replacement for the real 
ohmic resistance as well as for complex electric and magnetic impedances. In the sim-
plified model, the motor coil sees a slightly reduced voltage:

UmC = Ue− Rm⋅I

Further simplifying our model, we assume that the ESC’s “throttle” function reduces 
the battery’s internal voltage. That allows to sum up one single ohmic resistance:

UmC = U b−(Rb+Re+Rm)⋅I = Ub− R⋅I

This voltage applied to the motor coil is antagonized by an opposing voltage that is lit-
erally generated in the spinning motor by so-called mutual induction and sometimes 
also aptly called generator voltage. It is proportional to rotational speed and here is 
where the kV value (specific rotational speed) comes into play:

Umi = nm /kV and UmC = Umi   hence  k V = nm / Umi or k V = nm / UmC

This equation shows that kV essentially tells how fast the motor spins proportional to 
the effective voltage applied. That is one of the main motor characteristics, depending 
on number of poles, number of windings, and the motor’s geometry/size.
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Disregarding any current, the voltage effective in the motor is the battery voltage 
reduced by the mutual-induction voltage:

U eff = Ub−Umi = Ub− nm /k V

Then, according to Ohm’s law, the current flowing through the motor coil  and the 
whole system is the ratio of effective voltage and total resistance:

I = Ueff /R = (Ub− nm / kV)/R

If the motor is stalled (blocked), there is no rotation, hence no mutual induction, and 
current depends solely on ohmic resistance:

Ist = Ub /R

For convenience, we will use current (amperage) expressed as directly dependent on 
rotational speed. That is possible by means of specific current kA, which (as a negative 
value) tells how much current flows inversely proportional to rotational speed:

I = Ist + kA⋅nm   what makes  k A = −1
R⋅kV

  (I and Ist substituted)

kV can be transformed into specific moment (torque) kM, which directly (hence conve-
niently) tells how much moment (torque) is produced proportional to current:

Mm = I⋅k M

However, this equation is provisional. In addition to the electric losses, there are com-
plex mechanic and magnetic losses in the motor. For simplicity’s sake, they are repre-
sented by a constant internal friction moment that reduces the torque output:

Mm = I⋅k M− M0 m

An idling motor doesn’t produce any output torque, but it still has to overcome the 
internal friction moment what requires a corresponding idle current:

M0m = I0m⋅kM   hence  I0 m = M0 m /k M   and  Mm = (I−I0 m)⋅kM

Even in case of stall (blocked rotor) this friction (idle) moment is assumed active. Yet 
for convenience we define the stall moment as total torque produced internally:

Mst = Ist⋅kM

By the way,  sometimes the friction moment is  omitted in  drive calculations.  That 
spoils the calculation, which is actually simple: voltage makes for speed (rpm), and 
amperage makes for moment (torque), both proportionally and interdependently.

However, now the motor’s output (mechanical) power can be derived from torque and 
speed, and its input (electrical) power from current and (battery) voltage. Addition-
ally, the simple terms are substituted with complex ones which contain only specified 
constants and the rotational speed as sole variable, just to demonstrate that:

Pm = Mm⋅
2⋅π
60

⋅nm =
Ub− R⋅I0 m

R
⋅

nm

k V

− 1
R

⋅( nm

kV
)

2

        Pel = I⋅U b =
U b

2

R
−

Ub

R
⋅

nm

kV

Because the system’s total resistance was used in the calculations so far, this resis-
tance is included in the efficiency as well. So motor efficiency actually means drive 
efficiency, still not including the gear (whose efficiency is later included by multiplica-
tion). The drive’s efficiency is (provisionally) just the ratio of motor powers out/in:

ηm =
Pm

Pel

=
(Ub− R⋅I0m)⋅kV⋅n m − nm

2

Ub
2⋅kV

2 − Ub⋅kV⋅nm
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Mechanical-Mechanical Conversion

Mechanical systems are modeled in the form of a schematic sketch or, more specifi-
cally, a free-body diagram. It shows several connected bodies or a single body with all 
of their applied forces and moments, that is their “interface”. The gear is one of the 
bodies and is a simple transmission or rpm/torque transformer, respectively, between 
motor and propeller.

The most obvious gear property is its transmission ratio. In the case of model-airplane 
drives, it is always a reduction ratio. That means a quite high motor speed is reduced 
to a lower propeller speed. Conversely, a quite low motor moment is transformed to a 
higher propeller torque. Both speed and torque  directions may be reversed – by a 
spur gear like in the sketch above – but that does not matter in our calculations. How-
ever, the second equation is provisional:

ng = n m / ig   Mg = Mm⋅ig

After all,  the gear makes for some power losses. Obviously,  rotational speeds are 
mechanically fixed so the losses appear as reduction of torque. That is plausible since 
the losses stem from friction. We can see this in two extremely simple ways: constant 
or  proportionally  dependent  on  moment  (torque).  Either  way,  the  moments  are 
reduced and we just assume (define) it is the input moment:

Mg = (Mm− M0 g)⋅ig

Difference is that in this first case the friction moment as an absolute value has to be 
measured or guessed, what may be hard. Easier may be just estimating and later 
“tweaking” a gear efficiency as a relative value (second case):

M0 g = (1−ηg)⋅M m   or directly  Mg = Mm⋅ηg⋅ig

Probably a combination of both ways (and even non-proportional  and speed-depen-
dent friction) would be correct, but for simplicity’s sake one of the two ways is chosen. 
In any case, gear friction can be treated like internal motor friction so a gear friction 
moment requires a corresponding current just like the motor friction moment.

That solves the problem of calculating a gear efficiency in the first case by calculating 
a total mechanical drive power and efficiency:

I0 g = M0g/k M   makes 

Pmech = Mg⋅
2⋅π
60

⋅ng =
Ub− R⋅(I0 m+I0 g)

R
⋅

ig

kV

⋅ng − 1
R
⋅( ig

kV
)

2

⋅ng
2

Again in any case, the drive’s efficiency is finally the ratio of mechanical power output 
to the gear shaft and electrical power input from the battery:

ηd =
Pmech

Pel
  or else in our second case:  ηd = ηm⋅ηg
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Mechanical-Aerodynamic Conversion

The next and last body, the propeller, is a complicated component aerodynamically, 
so we will have to rely on a correspondingly complex, specialized tool to calculate the 
moment (torque) and other coefficients.

Propellers  are  usually  characterized  by 
dimensionless  coefficients  seen as valid 
for a certain geometric shape, regardless 
of size and speed. They are in some way 
related to the propeller’s diameter D as a 
common measure of size, as well as to 
rotational speed  n [s-1]. There are three 
characteristics (T, M, P) and correspond-
ing coefficients (cT, cM, cP):

Thrust T = cT ⋅ρ⋅n2⋅D4

Moment (torque) Mp = cM⋅ρ⋅n2⋅D5

Power Pshaft = cP⋅ρ⋅n3⋅D5

Now shaft power is also:

Pshaft = 2⋅π⋅n⋅M p = 2⋅π⋅cM⋅ρ⋅n3⋅D5

what makes  cM =
cP

2⋅π

In some way, these characteristics also depend on flight speed. So the coefficients, as 
dimensionless values, must be related to a kind of dimensionless flight speed as well 
as rotational speed. That is the advance ratio, which is meant to be the ratio of flight 
speed v [m/s] and circumferential blade-tip speed:

λ = v
n⋅D⋅π   but actually used is this slightly simpler definition:  J = v

n⋅D

Anyway, the tool mentioned above delivers the coefficients over the whole range of 
advance ratios, or from zero speed to top speed, as it were. So it is possible to calcu-
late the mechanical power needed to spin the propeller (shaft power, equation above) 
and the thrust power (also called propulsive power) produced by it:

P thrust = T⋅v = J⋅cT⋅ρ⋅n3⋅D5   because  v = J⋅n⋅D

The propeller’s efficiency is the ratio of these two powers:

ηp =
P thrust

Pshaft
  what makes it directly (dimensionless):  ηp = J⋅

cT

cP

Total system efficiency is the ratio of thrust power and electrical power:

η =
Pthrust

Pel
  or else:  η = ηm⋅ηg⋅ηp

See Martin Hepperle's JavaProp Users Guide.
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Basic Solution

Approach

All the equations presented above show that a drive’s behavior can be described as 
dependent on several given constants and one single variable – rotational speed. That 
includes even the propeller, so eventually the drive’s behavior can be described over a 
whole flight speed range from “static” (zero speed) to “pitch speed” (zero thrust).

Of course, this was intended since it is the basis for a solution in equation form. There 
has to be – and now can be – one single equation that delivers the rotational speed of 
the  whole  drive  including  propeller.  To  develop  this  equation,  we have to  equate 
something of the drive with the same thing of the propeller.

We want to equate the motor/gear (drive) torque with the propeller torque (moment), 
both dependent on rotational speed. We prefer the torques to get only a second-order 
polynomial. Equating motor/gear and propeller powers would give a third-order poly-
nomial, which would be unnecessarily complicated.

Accordingly, the term “constant” means independent of rpm; “decrease” or “increase” 
mean change with rpm or even rpm squared, respectively.

In the following derivation, the given kV value is not used but the kM and kA values in-
stead because that is more convenient. As mentioned above and proven below, kM is 
kV transformed, and kA is easily calculated from two given constants.

There are those two extremely simple ways to see gear losses: constant, or propor-
tional to torque. The former makes for simpler and more obvious combined constants 
while  the  latter  seems  to  be  more  practical.  Both  ways  are  presented  here  for 
comparison, but we will stick to the more practical way after that.

We get only a basic solution in the end insofar as it just gives rotational speed depen-
dent  on  propeller  power  coefficient.  However,  specialized  propeller  analysis  tools 
deliver this and other coefficients for the whole range of possible advance ratios. That 
is equivalent to flight speed range, so deriving all other characteristics for this range is 
possible then.

Specific Speed/Moment

The transformation of specific speed kV into specific moment (torque) kM has not been 
derived yet. It may be appropriate to make up for that before using it in the solution.

We consider only the conversion of electrical into mechanical power “inside” the motor 
but omit (disregard) electrical losses “before” and mechanical losses “after” it. The 
constants  define “internal”  voltage and moment,  respectively.  Multiplying them by 
current and speed, respectively, yields “internal” powers. Equating mechanical with 
electrical power clearly shows the transformation in question (Wikipedia).

Umi =
nm

kV

Pel = Umi⋅I =
nm

k V

⋅I

Mm = I⋅k M Pmech = Mm⋅
2⋅π
60

⋅nm = I⋅k M⋅
2⋅π
60

⋅nm

Pmech = Pel I⋅kM⋅
2⋅π
60

⋅nm =
nm

kV

⋅I k M = 60
2⋅π⋅kV
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Drive Torque 1

Quite simple and obvious combined constants  K1 and  K2 result for the drive (motor 
and gear) from assuming constant gear friction (first case above).

Torque comes from current in the electric motor, so this to begin with:

I = Ist + kA⋅nm = Ist + kA⋅ig⋅ng because n m = ig⋅ng

That makes the drive's torque (moment) dependent on rotational speed (rpm):

Mg = kM⋅I − M0 m − M0g = (I − I0m − I0 g)⋅kM because M0 m /g = k M⋅I0 m /g

Mg = (Ist − I0m − I0g + kA⋅ig⋅ng)⋅k M I substituted with equation above

Mg = Ist⋅kM − I0m⋅k M − I0g⋅kM + kA⋅k M⋅ig⋅ng expanded

Combining the constants makes things clearly arranged:

K1 = (Ist − I0m − I0g)⋅kM torque output when stalled [Nm]

K2 = 60⋅k A⋅kM⋅ig torque decrease with speed [Nm/s-1]

Mg = K 2⋅ng + K1 speed ng in rotations per second [s-1]

Drive Torque 2

Assuming gear friction in the form of gear efficiency, that is proportional to moment 
and hence inversely proportional to rotational speed (second case above), results in 
slightly more complicated combined drive constants K1 and K2. Yet it is a more practi-
cable way than the first one, and it is the usual way.

Torque comes from current in the electric motor, so this to begin with:

I = Ist + kA⋅nm = Ist + kA⋅ig⋅ng because n m = ig⋅ng

That makes the motor torque (moment) dependent on rotational speed (rpm):

Mm = kM⋅I − M0m = (I − I0m)⋅k M because M0 m = kM⋅I0m

Mm = (Ist − I0m + k A⋅ig⋅ng)⋅kM I substituted with equation above

Introduce gear efficiency and expand the equation:

Mg = Mm⋅ηg⋅ig

Mg = (Ist − I0m + k A⋅ig⋅ng)⋅kM⋅ηg⋅ig Mm substituted with equation above

Mg = Ist⋅kM⋅ηg⋅ig − I0m⋅kM⋅ηg⋅ig + kA⋅k M⋅ηg⋅ig
2⋅ng expanded

Combining the constants makes things clearly arranged:

K 1 = (Ist − I0 m)⋅k M⋅ηg⋅ig torque output when stalled [Nm]

K2 = 60⋅k A⋅kM⋅ηg⋅ig
2 torque decrease with speed [Nm/s-1]

Mg = K 2⋅ng + K1 speed ng in rotations per second [s-1]

11
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Propeller Torque

Propeller moment (torque) depends on rotational speed (rps) in any case:

M p = cM⋅ρ⋅D5⋅np
2 speed np in rotations per second [s-1]

Again combining the constants makes:

K3 = ρ⋅D5 torque increase with speed [Nm/s-2]

M p = cM⋅K3⋅n p
2 cM is not constant!

Formal Solution

Equating propeller torque with drive torque is our approach:

M p = Mg = M  (and of course np = ng = n )

This is really clearly arranged and easy:

cM⋅K3⋅n p
2 = K2⋅ng + K 1 substituted

cM⋅K3⋅n2 + (−K 2)⋅n + (−K1) = 0 rearranged (normalized)

There are standard solutions for such a second-order polynomial:

Δ = 4 cM K3(−K1) − (−K 2)
2 discriminant

The discriminant is negative for all values of cM, so there are two possible solutions:

n1,2 =
−(−K 2) ±√(−K 2)

2 − 4cM K3(−K 1)
2 cM K3

possible solutions

n1 (with positive square root) is the correct solution since n2 would be negative.

That was the basic solution’s formal derivation, but we can write it simpler:

n =
K2 + √K2

2 + 4cM K3 K 1

2cM K 3

solution

See Quadratic Formula at Wikipedia. Dimensional analysis is done in the next section.
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Applicable Solution

Finally, we want to make the polynomial constants K1, K2, and K3 directly and exclu-
sively depend on given constants, which usually are Ub, R, I0m, kV, ig, ηg, ρ, D, and cP. 
That also subtly modifies the second-order polynomial they belong to:

Substituting cM with cP makes

cM⋅K3⋅n2 + (−K 2)⋅n + (−K1) = 0 → cP⋅K3⋅n2 − K2⋅n − K1 = 0 [Nm]

K1 is the polynomial's constant term, and since we equated drive and propeller mo-
ment, it  must be a moment as well.  In fact,  it  is the drive's torque output when 
stalled, is a fixed positive number, and has the unit [Nm]:

Substituting  Ist =
Ub

R
  and  k M = 60

2⋅π⋅k V
  makes

K1 = (Ist − I0 m)⋅k M⋅ηg⋅ig → K 1 = 60
2⋅π

⋅(U b

R
− I0m)⋅ ig

kV

⋅ηg [Nm]

K2 is the term proportional to rotational speed n [s-1], so it must be moment change. 
In fact, it is the drive's torque-output decrease and therefore a negative number. Be-
cause rotational speed is rotations per second here, the unit is [Nm/s-1]:

Substituting  k A = −1
k V⋅R   and  k M = 60

2⋅π⋅k V
  in the K2 equation and expanding 

the formal solution (above) with ½ makes

K2 = 60⋅kA⋅kM⋅ηg⋅ig
2 → K2 = −900

π
⋅1

R
⋅( ig

k V
)

2

⋅ηg [Nm/s-1]

K3 is the term proportional to rotational speed squared  n2 [s-2], so it is a moment 
change as well.  It is the propeller's torque-input increase and therefore a positive 
number. It comes from aerodynamic lift and drag on the propeller blades, what lets it 
increase with airspeed squared and hence rotational speed squared, so the unit has to 
be [Nm/s-2]:

Substituting  cM =
cP

2⋅π
  in the polynomial (above) makes

K3 = ρ⋅D5 → K3 = ρ⋅D5

2⋅π
[Nm/s-2]

Now we can write the solution in a form more practical for use:

n =
K2 + √K2

2 + 4 cM K3 K 1

2cM K 3

→ n =
K2 + √K 2

2 + cP K 3 K1

cP K3

[s-1]

13
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Motor/Gear Illustration

Basic Characteristics

As a first step, we infer and interpret some basic drive characteristics, which will be-
come apparent in the diagrams later in this chapter. We draw on equations derived for 
the basic solution in the  previous chapter, primarily the drive’s moment/torque out-
put:

Mg = K 2⋅ng + K1 [Nm] speed ng here in rotations per minute [min-1]

The constant K 1 is the drive's torque output when stalled, that is at zero speed.

K1 = (Ub

R
− I0m) ⋅ 60

2⋅π
⋅

ig

k V

⋅ ηg [Nm]

This is a measure of the drive’s power, or more specifically of its torque-output power. 
It is just worth noting which properties make for a big torque. The constant’s equation 
has three parts or terms:

The term in parentheses is the maximum current (amperage) that the drive can draw 
and turn  into  motor  torque.  Powerful  motors  employ  high  battery  voltage  and/or 
thick-wire windings with low resistance, which is also one measure of the motor’s 
quality. Motors of the same size may have more or less electric resistance, giving 
more or less power. (And we include the battery’s and the ESC’s resistance – size and 
quality – in the drive’s resistance.) Another quality measure is low internal mechanical 
motor friction, which has to be overcome by a corresponding idle current and which 
usually increases with motor size. Still, the bigger and “better” a motor is, the more 
torque-output power it has.

The following term’s first part is the unit conversion multiplier that is needed because 
we specify specific speed kV as rotational speed (rpm) instead of angular speed. In the 
term’s  second  part,  the  motor’s  specific  speed  kV –  rpm per  Volt  –  is  inverted. 
Together with the conversion multiplier, that is actually the motor’s specific moment 
kM – torque per Ampere.  kV is in the denominator, so the faster the motor can spin 
(high kV) the less torque it can produce (low kM). These are relative (specific) values, 
and in addition it is true that an absolutely bigger motor tends to spin slower and pro-
duce more torque, that is its kV value is lower and its kM value is higher, respectively.

The motor’s specific speed  kV divided by gear reduction ratio  ig is the whole drive’s 
specific speed. Its inverse value, like in this equation, is the whole drive’s specific mo-
ment. The gear reduction ratio ig is the factor by which the motor’s torque is increased 
and the motor’s rotational speed is decreased. A gear is used for relatively slow-spin-
ning, relatively big – that is lightly loaded – propellers for which a matching motor 
alone would be too big, heavy, and powerful. The reduction gear actually transforms 
the motor’s specific speed and moment to lower and higher drive values, respectively.

The equation’s last term is simply gear efficiency. It is the proportion of motor torque-
output transmitted by the gear, and is a measure of the gear’s quality. Bigger gears, 
which are needed for more torque, tend to be more efficient.

14
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Obviously,  these  relations  are  all  proportional:  Torque  is  proportional  to  voltage, 
inversely to resistance, just friction subtracted; it is proportional to specific moment 
(so inversely to specific speed), gear efficiency, and reduction ratio. The bigger the 
drive the more torque. That is true at any rotational speed and especially at zero 
speed. So there will be a straight line in a diagram showing torque over speed, and 
the constant K 1 is the torque-axis intercept of this line – if the torque axis is located 
at the zero-speed point of the speed axis, that is (see section Motor/Gear Diagrams).

Then again, the constant  K 2 is the line’s slope, which is negative, meaning torque-
output decreases when rotational speed increases.

K2 = − 1
R

⋅ 60
2⋅π

⋅( ig

kV
)

2

⋅ ηg [Nm/min-1]   (In this form not applicable to solution!)

This is a measure of the drive’s  “rigidity” or  elasticity, respectively, it’s decrease of 
rotational speed with increase of load. This constant’s equation has three parts or 
terms, too:

The first term is just the drive’s resistance inverted. In this case, it also makes the 
constant  K 2 negative. High resistance makes for a low line slope, meaning a quite 
elastic drive. If such a drive’s torque load is increased, rotational speed will be notice-
ably reduced. Conversely, a “better” drive with lower resistance is more “rigid”. On 
the other hand, resistance is not only a quality measure. The bigger a motor’s size 
and the higher its specific speed kV the lower tends to be the whole drive’s resistance.

Again, the second term’s first part is the required unit conversion multiplier for rota-
tional speed. The second part is again the whole drive’s specific speed inverted, but it 
is even squared now. Actually, the unit conversion multiplier times the first part of this 
square is specific moment and the second part is specific speed inverted. A low-torque 
and – hence – fast-spinning drive is quite elastic, and vice versa. That is the reason 
why this relation is quadratic.

Put another way:  K 1 as the torque-line’s torque-axis intercept goes up with bigger 
drive specific moment, while idle speed n0 as the speed-axis intercept goes down with 
smaller drive specific speed (see next section). So both together make for a steeper 
torque line what is expressed by the drive’s specific speed inverted squared. Since a 
big and/or geared drive spins slow and has high torque, it is over-proportionally more 
“rigid” than a small and/or direct drive, which spins fast  and has low torque, and is 
quite elastic.

The equation’s last term is again gear efficiency. The “better” and bigger the gear, the 
bigger is the proportion of motor torque that is transformed to drive torque-output 
and the more “rigid” is the drive. A “cheaper” and smaller gear gives a more elastic 
drive.

In practice, not only  ηg but also the values of  R,  I0m ,  kV, and even  ig are often  not 
accurately known.  But  if  some real  currents  and  rotational  speeds  are  known by 
measurement, the drive calculation may be possibly calibrated (“tweaked”) by varying 
R. Usually a value can be found that makes the calculated currents and speeds equal 
to the measured ones by “correcting” both constants K 1 and K 2 at the same time. A 
practical value of ηg can be found in the calibration process as well.
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Characteristic Speeds and Quantities

To  illustrate  the  motor/gear  combination’s  characteristics  dependent  on  rotational 
speed, we need equations for some characteristic rotational  speeds as well. And for 
some of them, equations for the corresponding quantities have to be derived.

The rotational speed of a stalled motor is zero by definition:

nst = 0

Maximum rotational speed is “theoretical” or “ideal” because it could be reached only 
if there were no friction. It is where current I is (or would be) zero. We use two equa-
tions from the Electrical-Mechanical Conversion section to substitute variables in  a 
current equation from the Drive Torque 2 section. Equating this with zero gives maxi-
mum rotational speed ng max:

Ist =
Ub

R
k A = −1

R⋅kV
I = Ist + kA⋅ig⋅ng =

U b

R
−

ig⋅ng

R⋅k V

= 0 ng max = Ub⋅
kV

ig

The point (rotational speed) where the moment (torque) output is zero, is called idle 
(or  no-load)  speed  n0.  In  the  section  Electrical-Mechanical Conversion,  we  had  an 
equation for I dependent on rotational speed. When idle, current flows only to over-
come internal motor friction, that is idle current I0m. By definition, there is no gear fric-
tion when idle (no moment output) in our second case (gear efficiency ηg is specified). 
So just equating current I with motor idle current I0m gives idle speed n0:

I = (Ub −
ig⋅ng

kV
)⋅1

R
= I0 m   rearranged results in  n0 = n0g = (Ub− R⋅I0m)⋅

k V

ig

Next is the point of maximum mechanical power output Pmech. There is a maximum be-
cause Pmech is a negative (inverted) parabola as shown in Mechanical-Mechanical Con-
version. Here we write the equation in the form for our second case. Then we differen-
tiate Pmech with respect to ng and equate the result with zero. That reveals the position 
of maximum mechanical power output being at half idle speed:

Pmech = Mg⋅
2⋅π
60

⋅ng = Mm⋅ηg⋅ig⋅
2⋅π
60

⋅ng = −
ηg⋅ig

2

R⋅kV
2 ⋅ng

2 + (Ub− R⋅I0 m)⋅
ηg⋅ig

R⋅kV

⋅ng

dPmech

dng

= −
2⋅ηg⋅ig

2

R⋅k V
2 ⋅ng + (U b− R⋅I0m)⋅

ηg⋅ig

R⋅kV

= 0      ng Pmax =
U b− R⋅I0 m

2
⋅

kV

ig

=
n0

2

In the equation for mechanical power, drive speed is substituted with the equation for 
drive speed at maximum power. That gives the value of maximum mechanical power:

Pmech max =
(Ub− R⋅I0 m)2

4⋅R
⋅ηg
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Because Pmech is an inverted parabola, drive efficiency ηd is one as well, just skewed by 
the inversely proportional Pel line, so there is a maximum as well. This one is signifi-
cantly harder to derive as equation. We already saw that when we substituted the P 
terms with more complicated expressions dependent on drive rotational speed ng. The 
usual trick is using expressions dependent on current  I and finally substituting this 
with ng. So first we make the two powers and their components depend on current.

For that we need an equation giving rotational speed ng dependent on current I. We 
equate two equations from the section Electrical-Mechanical Conversion and substitute 
with one from the section Mechanical-Mechanical Conversion to derive this equation:

UmC = U b− R⋅I  and UmC =
nm

kV
 and ng =

nm

ig
 make  ng = (U b− R⋅I)⋅

k V

ig

And we need an equation giving motor moment Mm dependent on current I. We use 
two equations from the Basic Solution chapter:

Mm = (I − I0 m)⋅k M  and k M = 60
2⋅π⋅kV

 make  Mm = (I − I0 m)⋅ 60
2⋅π⋅kV

Now substituting Mm and ng in the Pmech equation above gives the needed equation. It 
is just motor power output  Pm expressed in electrical terms, being the proportion of 
current producing moment output times the proportion of voltage producing rotational 
speed. Gear efficiency reduces moment and hence also power output:

Pmech = Mm⋅ηg⋅ig⋅
2⋅π
60

⋅ng = ( I − I0 m)⋅(Ub− R⋅I)⋅ηg = Pm⋅ηg

Electrical power input Pel depends on current I, anyway:

Pel = Ub⋅I

The equation for  Pmech above showed (again) that we can substitute it  with motor 
power and this way get a simpler equation for drive efficiency. As desired, substituting 
the powers with the equations above makes for a manageable efficiency equation. 
Then we differentiate ηd with respect to I and equate the result with zero. That shows 
gear efficiency having no influence on the point of maximum drive efficiency:

ηd =
Pmech

Pel

=
Pm

Pel

⋅ηg =
(I − I0 m)⋅(Ub− R⋅I)

I⋅Ub

⋅ηg = (1 − R⋅I
U b

−
I0m

I
+

R⋅I0 m

Ub
)⋅ηg

d ηd

d I
= − R

U b

⋅ηg + I0 m⋅ηg⋅
1
I2 = 0   gives  Iηmax = √ Ub⋅I0 m

R

Using the drive speed ng equation above and substituting current I with this square-
root equation, finally results in the  point (rotational speed) of maximum drive effi-
ciency. In the drive efficiency equation, current I is substituted with the equation for 
current at maximum efficiency, giving maximum drive efficiency’s value. Rearranging 
the equation after substitution is not simple, yet a quite short equation results:

ng ηmax = (Ub−√ U b⋅R⋅I0 m )⋅
kV

ig
  is position and value is  ηd max = (1−√ R⋅I0 m

Ub
)

2

⋅ηg

See F  eature Article   by Joachim Bergmeyer and his derivations.
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Characteristic-Speed Ratios

Now that we have those characteristic speeds we can relate them to each other. There 
are no surprises, just a few insights that might be useful for assessing drives.

First, relating idle speed to “theoretical” or “ideal” maximum speed shows what both 
kinds of losses mean for a motor and for a motor-gear combination (drive) as well:

n0

nmax

=
U b− R⋅I0 m

Ub

= 1 −
R⋅I0 m

U b

After all, system impedance R represents all electrical losses and idle current  I0m all 
mechanical losses. Of course this is simplified, and by definition there are no gear 
losses in this second case where gear friction is proportional to moment output, which 
is zero here.

Impedance R times idle current  I0m is the voltage drop when idling. Relating that to 
battery voltage Ub is the proportion of this battery voltage lost. That subtracted from 
1 is the proportion of battery voltage left and seen by the motor coil. Now since volt-
age makes for rotational speed (proportionate to the kV value), that is also the pro-
portion of “theoretical” or “ideal” maximum speed remaining in reality as idle speed.

A “better” motor means less electrical and mechanical losses than those of a “cheap” 
motor. This is achieved for instance by using neodymium magnets instead of ferrite 
magnets, ball bearings instead of sleeve bearings, and better collector and brushes in 
case of a brushed motor or better ESC in case of a brushless, respectively. The better 
a motor is, the closer is its idle speed to the “theoretical” or ideal maximum speed.

So all losses in a drive result in more or less reduction of rotational speed. What we 
have seen for idle-speed so far will hold for other characteristic speeds as well. Now 
this idle-speed will be used as practical reference for more ratios, which will be just a 
bit more complicated, though.

In the previous section, we had already seen that maximum mechanical power output 
Pmech max is delivered at half idle-speed. The derivation is repeated here, just to show 
that the idle/ideal speed ratio is contained twice:

nPmax

n0

=

U b− R⋅I0 m

2
U b− R⋅I0 m

=

1
2
⋅(1 −

R⋅I0 m

U b
)

1 −
R⋅I0m

Ub

=

1
2
⋅

n0

nmax

n0

nmax

=
1
2

Actually  this  is  simple  and  general:  Half  idle-speed  is  the  lowest  speed  that  is 
reasonable by all means. It is because at lower speeds, the mechanical power output 
is lower while the electrical power input is even higher, and that is inefficient.

In practice, even this speed may be too low. Efficiency is not exactly good there, and 
that  means  a  lot  of  heat  is  produced  in  the  motor.  Depending  on power  setting 
(voltage) and heat removal (cooling), even short-time tolerable power may be lower 
than maximum power and thus tolerable speed higher than maximum-power speed. 
In that case, half idle-speed is a “theoretical” lower limit, but it is still the  absolute 
lower limit by all means.
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The practical lower speed-limit stems from heat production, which in turn depends on 
power and efficiency. So we have to consider battery voltage, which defines power, 
and rotational speed, which defines efficiency. The ratio of maximum-efficiency speed 
and idle speed looks not too complicated:

nηmax

n0

=
U b− √ Ub⋅R⋅I0 m

U b− R⋅I0 m

=
1 − √ R⋅I0 m

U b

1 −
R⋅I0 m

Ub

=
√ ηm max

n0

nmax

Interestingly enough, the idle/ideal speed ratio seems to reappear here again twice, 
now just with a square-root of the proportion of speed lost (by impedance and fric-
tion) in the numerator. But the term in the numerator is actually the square root of  
maximum motor efficiency, which had been implicitly contained in the equation for 
maximum drive efficiency at the end of the previous section.

That means with a “better” motor (and gear) and a higher battery voltage, peak effi-
ciency and of course the whole efficiency curve are higher. And as we see now, peak-
efficiency speed is closer to idle speed.

Generally  we can conclude that  maximum-efficiency  speed is  much  closer  to  idle 
speed than to maximum-power speed (which is always half idle-speed). That means in 
turn that maximum efficiency is reached at high rotational speed where power is low, 
so high efficiency and high power are mutually exclusive.

For any given drive, there is quite a difference between the full-power and the cruise-
power cases. Since battery voltage is seen as substantially lower in cruise flight, and 
since it is in the denominator in the equation above, efficiency is lower over the whole 
rotational-speed range, which is smaller as well. Also, a drive may be used with more 
or less battery cells and thus voltage, what would make efficiency somewhat higher or 
lower, respectively.

And  as  to  the  difference  between  “cheap”  and  “better”  drives:  For  instance  the 
motors’ peak efficiencies may be 0.74 or 0.85, respectively, what looks like quite far 
from idle speed. But their square roots would be bigger, 0.85 or 0.92, respectively. So 
both drives have their peak efficiencies close to idle speed, the “better” just even 
closer, at even less power than a “cheap” drive. Thus, the former has a pronounced 
peak while the latter’s efficiency curve is rounder and its peak part is flatter.

Then again, a “better” drive is more efficient and produces less heat than a “cheap” 
one. It may even have more heat-resistant magnets and wire insulation. Hence its tol-
erable power is higher and its tolerable speed lower, that is closer to maximum-power 
speed. If full use is made of its power potential, the “better” drive is even further 
away from its peak efficiency than the “cheap” one. Still  its efficiency at tolerable 
power is better.

Given that modern motors – brushless, neodymium magnets, ball bearings – are all 
“better”, and gears as well, this comparison is actually pointless nowadays. There is 
yet one insight that might be useful:  At full-power setting,  electric model-airplane 
drives are usually operated quite far from their peak efficiency.

In practical terms, they would reach their peak efficiency only at high dive speeds but 
never at ordinary flight speeds. The whole drive’s peak efficiency may be typically 5% 
lower than that of the motor alone, and it is fair to say that drive efficiency in opera-
tion is another 10% lower. So motor peak-efficiency is suitable as a comparative value 
for a motor’s quality and it may be used as an advertising point as well, but in any 
case we have to take it with a grain of salt or just as what it is, respectively.

19



Analyzing Electric Model-Airplane Drives Motor/Gear Illustration

Motor/Gear Example

Now that all necessary equations are at hand, illustrating diagrams will show all inter-
esting drive characteristics as lines or curves over a rotational-speed (ng) axis. To this 
end, a real case has to be chosen as an example, which is as prototypical as possible. 
In a sense, a drive that is little short of vintage is just that:

It is a drive for a vintage-style parkflyer brought out in 2000. Parkflyers were a new 
category that made the hobby more affordable and practicable by means of a small 
and inexpensive electric drive. Characteristic were a 400-size brushed can-motor, a 
primitive reduction gear for a quite efficient slow-flight propeller, a simple “brushed” 
ESC, and a 7-cell NiCd battery to be charged from a car battery with a simple charger.

   

The 7x6.5" propeller was made by  Günther, a German manufacturer of flying toys. 
Actually, this is a toy propeller as well as the gear may be seen as a toy gear. The can 
motors have been made in huge numbers for automotive applications. All that quali-
fies the drive as “cheap” in the sense of this chapter.

The calculations described here have been developed for this very drive in the first 
place. It was not yet customary back then to specify all  necessary characteristics. 
They had to be collected from different sources and derived by own measurements or 
calculations, respectively. The result in this case is well-nigh typical again:

Ub 8.4 [V] 1.2 V nominal NiCd cell voltage, 7 cells
R 0.373 [Ω] 0.24 Ω motor (specified) + 0.133 Ω battery, ESC (“tweaked”)
I0m 0.7 [A] specified, actual value may differ
kV 3000 [min-1/V] specified, actual value may differ
ig 2.3 [-] specified, actually 49:22=2.227
ηg 0.89 [-] “tweaked” by experiment and measurement
Imax 12/8/7 [A] absolute/1 minute/4 minutes, loosely specified
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Motor/Gear Diagrams

While its peak value is even 61%, overall drive efficiency is only 58% at maximum 
straight-and-level speed and 54% in climb (in this case of a retro-style parkflyer):
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Coincidentally (in this case), maximum tolerable amperage is even at a slightly slower 
rotational speed than maximum power, but static run is slightly beyond the 1-minute 
amperage limit, and climb is slightly beyond the 4-minute amperage limit:
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The diagrams on the previous page show the case of full-power, that is 8.4 V battery 
voltage. The following two diagrams show the case of cruise power (which is known 
from the performance calculations as well as the climb case). The ESC is set for an 
equivalent 0.6 voltage reduction factor, giving 5.0 V equivalent battery voltage:
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Cruise rotational speed advantageously coincides with maximum-efficiency rotational 
speed. That may be just a coincidence, but it might have been deliberate designing as 
well. The amperage limits still all apply but are not relevant in cruise flight:
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Finally,  we compare the full-power and cruise-power cases.  The lines  of  electrical 
power are not parallel (just an observation), and the efficiency curves (particularly 
peak  efficiencies)  are  different,  both  due  to  the  different  voltages.  However,  the 
efficiencies in cruise and climb are virtually equal (53% or 54%, respectively):
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The lines of amperage and moment (torque), respectively,  are parallel. That means 
the drive’s elasticity (its decrease of rotational speed with increase of load) does not 
depend on power setting. Cruise and climb currents (3.0 A, 7.5 A) are worth noting:
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Motor/Gear Comparison

There are no hard and fast rules about drawing conclusions from drive characteristics, 
yet there are striking similarities in different cases. To give a clue, the vintage “cheap” 
example drive is compared to two rather different ones. The first comparative exam-
ple is vintage as well, just a “better” brushed inrunner drive. The second is ten years 
younger and nowadays typical with brushless/gearless outrunner motor and a LiPo 
battery. Efficiencies and a few ratios are worth noting:

Type of model 55" retro parkflyer 100" thermal glider 95" Sr. Telemaster

Weight of model 0.85kg / 1.9lbs 1.7kg / 3.75lbs 4.5kg / 10lbs

Motor 400-size “can” 480-size premium 4130 brushless

Gear  ig ‒ ηg 2.3:1 ‒ 89% 4.4:1 ‒ 95% no gear ‒ 100%

Weight of drive 95g / 3.35oz 184g / 6.5 oz 405g / 14.3oz

Power “in” static 70 W (82 W/kg) 150 W (88 W/kg) 500 W (111 W/kg)

Power “out” static 37 W (0.39 W/g) 100 W (0.54 W/g) 350 W (0.86 W/g)

Battery (weight) 7s 1000 NiCd (170g) 7s 2300 NiCd (442g) 4s 5000 LiPo (548g)

B. Voltage (energy) 8.4 V (49 Wh/kg) 8.4 V (44 Wh/kg) 14.8 V (135 Wh/kg)

Motor / Drive  kV 3000 / 1300 rpm/V 3440 / 780 rpm/V 360 / 360 rpm/V

Idle/max.  I0m  / Imax 0.7 A / 8 A  1min 0.76 A / 20 A  1 min 1.3 A / 60 A  1 min

Motor / total  R 0.24 / 0.373 Ω 0.071 / 0.134 Ω 0.062 / 0.117 Ω

Peak eff. ηd max (ηm max) 61% (74%) 75% (85%) 81% (86%)

Cruise/climb eff. 53% / 54% 66% / 65% 73% / 71%

Cruise/climb amps 3.0A / 7.5A = 0.40 3.7A / 16.9A = 0.22 9.2A / 33.6A = 0.27

Cruise/climb rpm 5050 / 7250 = 0.70 2400 / 4800 = 0.50 2150 / 3900 = 0.55

Climb/ideal rpm 7250/10920 = 0.66 4800 / 6550 = 0.73 3900 / 5330 = 0.73

The first drive is so weak and inefficient that its amperage in cruise has to be even 
40% of that in climb. Now cruise rpm is even 70% of climb rpm, and climb rpm is only 
66% of ideal rpm. In more “normal” cases like the two other drives, about ¼, ½, and 
¾, respectively, would be good first-order estimates for these ratios.

The “better” the drive the better are all its efficiencies and the lesser is the difference 
between motor and drive peak-efficiency.  The respective efficiencies in cruise and 
climb are about equal, and up to ten percent-steps lower than peak efficiency. There 
are size effects, but they are small: A brushless/gearless replacement for the small 
first drive has two percent-steps less peak efficiency than the big third drive.
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Digression: Helicopter

Finally we take a look at an example that does not actually fit in our comparison since 
it is a helicopter motor, as indicated by the pinion on its shaft. Yet it is an interesting 
example for a motor’s friction moment and it would make a good tow-plane motor.

It is very powerful for its size and weight by means of special magnetic material, thin-
sheet laminated core, thick non-stranded wire, heat-resistant insulation and magnets, 
cooling fan, and high rotational speed. This is not only a “better” motor, this is a 
“premium” one, evidenced by efficiency and price. A few characteristics were speci-
fied, but idle current and efficiency were not:

Power “in” 2000 W continuous
(max. with 8s LiPo)

Speed 30000 rpm maximum
(mechanically)

Weight 235g / 8.3oz

Battery 6s LiPo / 22.2 V
(or 8s / 29.6 V)

spec. speed  kV 930 rpm/V

Resistance  Rm 0.011 Ω

Idle amps  I0m 0.8 A at 500 rpm
2.7 A at 15000 rpm

Peak eff. ηm max 93% at 20000 rpm (6s)
94% at 27000 rpm (8s)

Idle current was measured by spinning the unloaded motor with the dedicated battery 
and ESC, which is actually a governor and which has built-in telemetry.  I0m turned out 
to be highly variable, unlike in our simplified drive model where – for a linear model – 
it is just assumed to be constant in the operational speed range, which is small. (That 
is shown in the example full-power diagram above, although the substantially lower 
cruise-power speed might make a different I0m value advisable.)

Only two values were taken, 0.8 A at a speed close to zero (500 rpm) and 2.7 A at 
target speed (15000 rpm). Using the latter as the constant value in the simplified 
drive model results in a still spectacular 93% motor peak efficiency at 20000 rpm (and 
even 94% at 27000 rpm with an 8s LiPo battery). The lower value (0.8 A at 500 rpm) 
just goes to show how variable idle current I0m actually is.

The helicopter’s transmission consists of a 9.625:1 reduction-ratio main-rotor gear, a 
subsequent 1:5.5 transmission-ratio tail-rotor gear, a gimbal joint, and a 1:1 ratio 
angular gear. The whole transmission’s efficiency is higher than 96%. A single-stage 
or even a two-stage tow-plane gear, built like a helicopter’s main-rotor gear or as a 
special planetary gear, would be at least as efficient (without the tail-rotor gear).
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While an airplane is borne by its wings and driven by a propeller, a helicopter is borne 
as well as driven by its main rotor, which is a rotary wing. Other than a model propel-
ler, it has variable blade-pitch, both cyclic and collective, used to control the heli-
copter’s pitch and bank as well as acceleration or climb (and the respective oppo-
sites). Although the “thrust” needed from the main rotor is highly variable, its average 
approximates the helicopter’s weight.

The main rotor can produce the same thrust at low rotational speed and high blade 
pitch or – vice versa – at high rotational speed and low blade pitch. For reasons to be 
explained only in the next chapter, the main rotor needs less power at lower rotational 
speed. In our simplified drive model, the ESC adjusts speed by the equivalent of more 
or less battery voltage. Virtually proportional to any voltage change, all curves in the 
motor/gear diagram are scaled horizontally and the power curves vertically as well. 
Efficiency is only marginally affected (vertically) by voltage change:
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The three-blade, 1092 mm diameter main rotor produces the thrust for 4.5 kg weight 
either at 1420 rpm rotational speed with 450 W electrical power or at 1520 rpm with 
520 W. Overall efficiency ηd is 77% or 78%, respectively, the pronounced maximum in 
both cases. This example shows that helicopter drives are always operated (on aver-
age) at the same points on the curves in the diagram, no matter how these curves are 
scaled. And it shows that this motor (size, kV) is chosen to work at its peak efficiency.

To this end, it has to spin relatively fast, that is close to the respective maximum, not 
exploiting  either  its  power  potential  (only  500 W  of  up  to  2000 W  are  used  on 
average) or its speed potential (only 14500 rpm of up to 30000 rpm). Together with a 
high-ratio gear and a proper high-pitch propeller in a low-wing-loading tow-plane, this 
motor should further exploit its speed potential (by higher voltage, 8s instead of 6s) 
though still not its power potential (in order to work at peak efficiency). That would 
make for about 80% efficiency in climb. (Compare examples in previous section.)

This is possible only because the motor is very powerful and efficient but still  very 
small and lightweight, even if expensive – just a modern “premium” type.
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Propeller Illustration

Propeller Data

We have to employ a specialized software tool to calculate a propeller’s coefficients, or 
these  are  offered  by  the  propeller’s  manufacturer,  or  there  are  even  coefficients 
measured in a wind tunnel. In any case, we get a table with values for at least the 
advance ratio J, the power coefficient cP, and the thrust coefficient cT. There may be 
more values that are useful to assess the propeller, but they are not used in the drive 
calculations. For our example propeller, JavaProp calculated the following data:

J η η* stalled

[-] [-] [-] [%] [%] [%]

0.00 0.12445 0.13799 0.0 0.0 100 !

0.05 0.08813 0.12009 6.8 16.3 100 !

0.10 0.10927 0.14835 13.6 27.1 100 !

0.15 0.11751 0.15737 20.1 36.7 100 !

0.20 0.12102 0.15838 26.2 45.3 100 !

0.25 0.12248 0.15489 31.6 52.9 94 !

0.30 0.12170 0.14826 36.5 59.8 66

0.35 0.11894 0.14045 41.3 65.9 38

0.40 0.10057 0.12027 47.8 72.7 5

0.45 0.09208 0.10832 52.9 77.7 0

0.50 0.08585 0.09705 56.5 81.9 0

0.55 0.07852 0.08472 59.3 85.7 5

0.60 0.07029 0.07188 61.4 88.9 5

0.65 0.06112 0.05839 62.1 91.8 11

0.70 0.05088 0.04423 60.9 94.3 11

0.71 0.04867 0.04128 60.2 94.8 11

0.72 0.04643 0.03830 59.4 95.2 11

0.73 0.04420 0.03524 58.2 95.7 16

0.74 0.04189 0.03225 57.0 96.1 16

0.75 0.03955 0.02924 55.5 96.5 16

0.76 0.03711 0.02614 53.5 96.9 16

0.77 0.03462 0.02300 51.2 97.4 16

0.78 0.03212 0.01988 48.3 97.8 16

0.79 0.02959 0.01676 44.7 98.1 16

0.80 0.02709 0.01346 39.8 98.5 22

0.81 0.02441 0.01021 33.9 98.9 22

0.82 0.02167 0.00692 26.2 99.3 22

0.83 0.01894 0.00366 16.0 99.6 22

0.84 0.01616 0.00038 1.9 100.0 22

0.85 0.01327 -0.00302 -19.3 100.0 22

c
P

c
T

The coefficients depend on the advance ratio. From zero, that is zero speed (static), 
to the first value at which the propeller delivers negative thrust, the advance ratio is 
incremented by a variable step width. So the number of steps, or rows in the table, 
depends on the  propeller  and the  software  tool.  Wind tunnel  measurements  may 
cover only part of the whole range of advance ratios and the static case (zero).
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The table above is an example for a certain propeller as well as for a certain calcula-
tion tool. It is only an excerpt as far as all absolute values (rpm, speed, power, thrust) 
have been omitted. In the following discussion of the table’s columns, literal quota-
tions from the JavaProp users manual are enclosed in » and « quotation marks:

»The propeller analysis is performed at fixed intervals of J but the step size is adapted 
and reduced when the efficiency begins to drop.«

The power coefficient cP and the thrust coefficient cT for each advance ratio J are the 
values actually needed for the drive calculations.

Propeller efficiency  η (named  ηp in the other chapters) is calculated from the first 
three columns using the simple equation specified in the section Mechanical-Aerody-
namic Conversion. »The output also contains values of η* which is the maximum pos-
sible efficiency for the current power loading.«  This is called propulsion efficiency, 
reflecting only the power lost in the propeller’s slipstream (or wake) by repulsion.

»One column is labeled “stalled” – it lists the percentage of the blade where the local 
airfoils are operating at angles of attack beyond stall. An additional exclamation mark 
“!” appears in this column when the power loading is too high for the theory to give 
accurate results. This usually happens at low advance ratios.«

See Martin Hepperle's JavaProp   Users Guide  .

Usually, propeller coefficients are calculated or measured, respectively, for various ad-
vance ratios J at a fixed rotational speed n. To this end, flight speed v is varied from 
zero to the speed where thrust is zero (colloquially called “pitch speed”). Low flight 
speeds or advance ratios, respectively, mean high angle-of-attack on the blades and a 
high power loading from lift and drag, especially when the blades are stalled.

No propeller analysis tool is able to calculate reliable coefficient values in the realm of 
stall. That is why JavaProp warns with an exclamation mark “!” when the better part 
of the blades is stalled at low speed. That does not mean that the calculated coeffi-
cients are completely useless but that they are far from accurate. Actually, the coeffi-
cients are not quite reliable even at higher speeds as long as there is at least some 
stall. In this example, only the 0.45 and 0.50 advance ratios are without any stall.

At even higher speeds or advance ratios, respectively, an ever increasing inner part of 
the blades is (negatively) stalled. That does not really spoil the coefficients because 
the inner part contributes little to the propeller’s thrust and torque. At low advance 
ratios, the  whole blades are more or less (positively) stalled,  particularly the outer 
parts which make for most of thrust and torque. As shown in the next section, the 
blade’s pitch increases from hub to tip so only a small range of advance ratios gives a 
good angle-of-attack on the whole blade.

At higher rotational speed, the blades are basically working in a faster, hence “better” 
airflow and can generate more thrust. As a result, thrust coefficients are higher in a 
wider range of advance ratios. However, the difference is relatively small and an elec-
tric  drive  has  little  increase  of  rotational speed n (colloquially  called  “unload”)  at 
higher flight speed v. So, coefficients calculated or measured for only one rotational 
speed will suffice for the whole flight speed range in drive calculations. This fixed rota-
tional speed should just be close to the actual rotational speeds occurring on the drive 
in flight. It is even acceptable to use coefficients provided for full-power rotational 
speed for  the much lower cruise-power speed as well  since calculated coefficients 
hardly differ (other than measured ones).
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Propeller Example

This 7x6.5" propeller (actually 17.5x16 cm) has been mentioned and shown before in 
the Motor/Gear Example section. It was made by Günther, a German manufacturer of 
flying toys. Together with the primitive gear, it was optimized for 400-size parkflyer 
drives and has an unusually high pitch-to-diameter ratio. The blades have a traditional 
elliptic planform and a flat-plate airfoil with a defined leading edge radius. This simple 
(as opposed to refined) design makes its characteristics well predictable for a simpli-
fied calculation tool, even if still not in cases where blade stall occurs.

A front view and a side view have been shot with a telephoto lens to minimize per-
spective distortions. Lens distortions have been removed with a special software tool. 
The black propeller makes for good contrast but still the outlines had to be improved 
in a graphics editor. Both propeller pictures must have the same width (in pixels) so 
they can be processed by Martin Hepperle’s PropellerScanner. This program combines 
both blades into an abstract blade geometry in table form.

Additionally there are diagrams for 
local blade chord  c, twist angle  β, 
and  pitch  H.  They  are  all  drawn 
over the blade’s relative radius r/R 
from center (0.0) to tip (1.0) and 
are useful  to  check the geometry 
derived from the pictures for cor-
rectness  or  plausibility,  respec-
tively.

This  diagram  shows  blade  chord 
derived  from both  front  and  side 
view. Outline errors are small com-
pared to the chord seen in the top 
view so the result is a smooth line 
showing  the  hub  and  the  blade’s 
round shape.
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The twist angle diagram shows the 
hub with a defined angle, what is 
obviously  wrong.  It  has  to  be 
clipped later in the calculation tool 
by specifying the hub’s diameter.

Expectably, blade angle β should be 
close  to  90°  at  the  center  and 
should diminish towards the tip so 
that  it  corresponds to  the  propel-
ler’s pitch H.

Essentially,  β is the arc tangent of 
the  pitch-to-radius  ratio.  This  in 
turn  is  a  hyperbolic  line  if  local 
pitch  H is  assumed  constant  and 
local radius r/R runs from 0.0 to 1.0 
or r from 0 to R, respectively. This 
highly  curved  hyperbola  combined 
with the arc tangent gives the char-
acteristic curve shape shown here.

Usually  the  curve  is  more  or  less 
skewed because pitch  H  is actually 
not  constant  over  the  radius  r/R. 
For different reasons, propeller de-
signers  choose  varying  local  pitch 
values H from hub to tip.

In this case, local pitch H increases 
linearly from hub to tip as shown in 
this  diagram.  The  0.16 m nominal 
pitch  occurs  at  70% of  the  blade 
radius R while rather 75% of radius 
is the common reference point  for 
propeller designs.

Above 0.70·R, towards the tip, the 
local pitch is bigger than the nomi-
nal  one,  and below this  point,  to-
wards the hub, it is smaller. Accord-
ingly, the local twist angles are big-
ger or smaller, respectively.

In both diagrams, the lines are noticeably uneven between about 0.7 and 1.0 relative 
radius r/R. Improving the outlines in a graphics editor went not really well especially 
on the right blade in the side view. The outline drawn there by hand turned out un-
even, but only half of the error is in the pitch and twist values because they are de-
rived from both blades.

The unevenness could have been corrected in the pictures or in the geometric data 
derived from them. This has not been done because the error is small, particularly 
since the whole propeller calculation is only an approximation. Among other things, 
this example is supposed to show the relative insignificance of such errors.
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The geometry table produced by PropellerScanner has to be reduced to three columns 
with radius r, blade chord c, and twist angle β. This excerpt can be entered into Martin 
Hepperle’s  JavaProp calculation  tool.  At  least  the propeller  and spinner diameters 
have to be specified as well as a rotational speed for the propeller analysis. A sketch 
shows the propeller’s geometry as used for the calculations:

The hub is drawn like a spinner and except from the calculations.  Front, top, and side 
view show blade elements aligned to the same proportion of their chord (33% by 
default). In case of this example propeller, that matches the real shape quite well. 
Scimitar-shape propellers would need alignment to up to 100% or even more. Any-
way, the sketch shows smooth outlines and twist angles with little unevenness.

Airfoils have to be specified for the four radius stations shown in the sketch (at center, 
one-third and two-thirds of radius, and tip). There are lift and drag coefficients for 
several airfoils prepared in the tool, and it is possible to add some for more. That is 
not necessary here since the example propeller has flat-plate airfoil over the whole 
radius.  There  are  even  two  sets  of  flat-plate  coefficients  – for  Reynolds numbers 
100,000 and 500,000 – but there is only a small difference in drag. Besides, on this 
small  and slowly  spinning propeller  the Reynolds number goes up to only 80,000 
(shown by PropellerScanner) so 100,000 at all four stations is the single choice.

There are several inaccuracies now: (1) The outer blade parts are rendered somewhat 
uneven, though the general outline is correct and even fits the pitch specification. (2) 
Airfoil coefficients are available only for too high Reynolds numbers, though flat-plate 
is fairly insensitive to them so the values used should be not too optimistic. (3) Rota-
tional speeds are different in climb and cruise (7300 / 5100 rpm), though the differ-
ence in propeller coefficients should be only a few percent.

Comparative calculations showed that indeed the calculated propeller coefficients vary 
very little. We conclude that propeller calculations are in no case exact, not even in 
this simple case. Then again, probably nobody would measure this toy propeller in a 
wind tunnel, so calculation is the only choice. In view of its limited accuracy already, 
the results for 7000 rpm are used for any rotational speed in question here.
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Propeller Diagram

The example propeller’s coefficients had to be calculated. The analysis for 7000 rpm 
rotational speed yielded the data listed in the first section of this chapter, which are 
shown (except the last column) in the following standard propeller diagram:
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The two coefficients cP and cT as well as the two efficiencies η and η* are plotted over 
the propeller’s whole range of advance ratios  J from zero (“static”) to 0.84 (“pitch 
speed”). Rather, this range should reach at least to the 0.91 pitch-to-diameter ratio, 
which is unusually high for a model propeller and actually advantageous here.

The problem is that peak efficiency being at only 0.65 advance ratio limits ideal (theo-
retical) peak efficiency to only 75%. (That is just a statement here, without explana-
tion.) So this “cheap” propeller gives away the potential for better efficiency, presum-
ably due to its particular local-pitch distribution and flat-plate airfoil. A most efficient 
propeller would have 1.4 maximum advance ratio, its peak efficiency being at 1.0 ad-
vance ratio. There, ideal (theoretical) peak efficiency is 83%, the absolute (physical) 
maximum even for a “perfect” propeller (another mere statement).

The lines for the coefficients  cP and  cT look smooth above 0.45 advance ratio but 
warped below. That is where serious blade stall occurs so calculated coefficients are 
unreliable. The lines now clearly show how unreliable that might be. Advantageously, 
the operating points for climb and cruise (known from the performance calculations) 
are in the smooth, reliable range.

That is typical for fairly well designed propellers, as well as the basic shape of the 
lines. Very roughly, they have a horizontal part where blade stall occurs and go down 
where not. Propellers without any blade stall in the higher advance-ratio range (unlike 
this one which has some above 0.50) actually have a virtually straight cT line there. Of 
course, when thrust (cT) is zero (at “pitch speed”) some positive power (cP) is still 
needed to overcome the blades’ drag.
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The efficiency η line is only faintly warped because the warps in the cP and cT lines are 
very similar. These coefficients represent something like lift and drag on the propeller 
blades, respectively, so calculation errors in the realm of stall affect both similarly. 
Hence, dividing one by the other makes for a nearly smooth efficiency curve.

Its shape shown here is typical.  Efficiency, as the ratio of thrust power and shaft 
power, is zero at zero flight speed because – despite big thrust – thrust power is zero 
there. Conversely, thrust is zero at “pitch speed” and so are thrust power and effi-
ciency again.

The curve is skewed to the right with the peak efficiency at a relatively high advance 
ratio, just like an electric drive’s efficiency curve (see previous chapter) and for analo-
gous reasons. Correspondingly, in a full-power climb the propeller is highly loaded and 
does not work at its best efficiency. The propeller operates quite lightly loaded and 
close to its peak efficiency in cruise flight.

The efficiency η* line is only faintly warped as well (for the same reasons as η). It is a 
measure of the power dissipated in the propeller’s slipstream when generating thrust 
by repulsion (Newton’s second law). Hence it is zero at zero flight speed because all 
the power put into the slipstream makes for thrust but not for thrust-power. It goes 
up to 100% when thrust is zero at “pitch speed” because there is no slipstream then.

A lightly loaded propeller (low power per propeller disk area) accelerates its slipstream 
only slightly. That is more efficient than producing the same thrust by strongly accel-
erating  a  smaller,  hence  higher-loaded  propeller’s  slipstream.  At  7000 rpm,  this 
example propeller is highly loaded with cP values higher than 0.10 at advance ratios 
lower than 0.5. Its η* curve is not far from a straight, diagonal line between its end 
points. A lightly loaded propeller would have  cP values all below 0.10, an  η* curve 
more curved away from a diagonal, and a correspondingly more “bulgy” η curve.

In the dimensionless propeller diagram, the η* line shows an “ideal” efficiency, that is 
with repulsion losses only. Thus, the closer the η line is to the η* line, the better is the 
propeller’s design. Besides, the lighter loaded a propeller is, the more curved are both 
lines and good efficiencies are possible over a wider range of advance ratios.  And 
finally, the higher the advance ratios the propeller can reach, the higher the efficiency 
curve can go. A perfect propeller’s peak efficiency would be 83% at 1.0 advance ratio.  
Customary propellers, even “better” ones, reach their noticeably lower peak efficien-
cies at advance ratios lower than 1 (see comparisons in the next sections).

This example propeller is far from perfect, with its elliptic blade shape, round leading 
edge, and flat-plate airfoil. It is highly loaded because it is small and spins fast, so it 
has moderate peak efficiency in a quite small speed range. Its peak efficiency is mod-
erate also because it reaches only low advance ratios due to its particular local-pitch 
distribution and its flat (not cambered) airfoil. It is just a typical “cheap” propeller.

Still the designer managed to get the most out of it. Both motor and propeller operate 
close to peak efficiency in cruise flight. Efficiency in climb is still acceptable and climb 
is only a minor part of the airplane’s flight envelope. So the propeller as well as the 
whole drive (and the airplane) are not technically ideal but economically. This is the 
kind  of  insight  to  expect  from these  drive  calculations.  After  all  the  drive  is  not 
designed or optimized here but just analyzed.

Now that we know the example propeller is not technically ideal, there is actually no 
reason to strive for ideal calculations. In addition to the inaccuracies mentioned in the 
previous  section,  there  are  the  coefficient-curve  warps  in  the  lower  advance-ratio 
range. It is technically possible and hence tempting to smoothen these curves, so we 
must finally show that this would be to no avail.
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To this end, the example standard propeller diagram is repeated with smoothened 
curves added. For simplicity’s  sake,  the spreadsheet software’s  built-in  polynomial 
interpolation function has been used.  Simple second-order  (quadratic)  polynomials 
give a very good approximation in the higher advance-ratio range and a reasonable, 
smooth curve in the lower. The automatic polynomial-coefficient calculation needed 
some help in the form of preset axis intercepts, which have been found by trial. In the 
diagram, the smoothened curves are thinner and darker than the original ones.
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The smoothened efficiency  η curve is an exception in that it is not interpolated. Its 
values have been calculated by employing the usual equation, that is dividing the 
smoothened cT values by the smoothened  cP values and multiplying by the advance 
ratio J. Hence the efficiency curve is visual proof of the smoothened coefficient curves’ 
plausibility.

Yet these curves are of little value. Since the coefficient ratio is multiplied by the 
advance ratio, even aberrant coefficient values give reasonable efficiency values, the 
more so the lower the advance ratio is. But warps are just in the low advance-ratio 
range while at higher advance ratios the coefficient curves are smooth, anyway.

The smoothened cP curve’s axis intercept happens to coincide with that of the original 
curve. Then again, the smoothened  cT curve’s axis intercept is substantially higher 
than the static thrust coefficient calculated by  JavaProp. Even if this calculation is 
unreliable due to the occurrence of  blade stall,  it  is  actually  not wrong.  Rather it 
seems that the smoothened curve would pertain to an ideal propeller with little to no 
blade stall. In fact, the real propeller’s static thrust has been measured with a spring 
scale and it turned out to be approximately like calculated.

In the end, there is just no way to get correct coefficient curves. The warped curves 
are still useful after all, the more so since their relevant part is smooth, anyway. And 
if reliable static values are needed they can be measured.
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Propeller Comparison

This section corresponds to the respective comparison section in the previous chapter. 
The example propeller, a Günther 17.5x16cm toy propeller, belongs to the example 
drive. It is compared to the respective propellers of the other two drives, an aero-naut 
CAM-Carbon 14x8" folding propeller and an APC 17x12" E thin electric propeller. They 
are shown to their relative sizes here:

Type of model 55" retro parkflyer 100" thermal glider 95" Sr. Telemaster

Weight of model 0.85 kg / 1.9 lbs 1.7 kg / 3.75 lbs 4.5 kg / 10 lbs

Diam. x pitch – ratio 6.9x6.3"  –  0.91 14x8"  –  0.57 17x12"  –  0.71

Disk area – max. ηp 0.024 m2 –  62% 0.099 m2 –  75% 0.146 m2 –  69%

Opt./max. J – ratio 0.65 / 0.84 – 0.77 0.55 / 0.70 – 0.79 0.80 / 1.09 – 0.73

climb/cruise Speed 9.6 / 8.0 m/s 11.7 / 9.0 m/s 15.0 / 12.0 m/s

Thrust 1.86 / 0.65 N 5.46 / 0.74 N 14.3 / 2.76 N

Thrust power 17.9 / 5.2 W 63.8 / 6.6 W 214 / 33 W

Rotational speed 7336 / 4931 rpm 4836 / 2651 rpm 3911 / 2171 rpm

Advance ratio 0.45 / 0.56 0.41 / 0.57 0.53 / 0.77

Thrust coefficient 0.10832 / 0.08329 0.04322 / 0.01961 0.07896 / 0.04943

Power coefficient 0.09208 / 0.07761 0.02567 / 0.01511 0.06878 / 0.05445

Moment (torque) 4.4 / 1.7 N·cm 18.3 / 3.2 N·cm 85.8 / 20.9 N·cm

Shaft power 34 / 9 W 93 / 9 W 351 / 48 W

Power loading 1409 / 360 W/m2 935 / 90 W/m2 2397 / 324 W/m2

Efficiency 53% / 60% 69% / 74% 61% / 69%

The most obvious difference between the propellers is their size, that is their diameter 
and disk area, which is basically diameter squared. Disk area relation is about 1:4:6. 
While a bigger propeller is more “powerful” than a smaller one, their power  loading 
(shaft power per disk area) depends on the airplanes they are used on. The first and 
third pull draggy airframes which make for a similar power loading in cruise. In climb, 
the third is loaded more than the first because its drive is relatively more powerful. 
The second propeller is lightly loaded due to small drag in cruise and low weight in 
climb. Both, as well as a relatively big folding propeller, is typical for gliders.
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All three propellers are close to their maximum efficiency in cruise but a few percent-
steps below it in climb. The first and third are good for long cruise flights and short 
climbs, what is typical for their airplanes. The second, which has the smallest pitch to 
diameter ratio, is good for climb but still good for cruise due to the glider’s low speed 
and low drag, which makes for an extremely low power loading.

In his Web page “How a Propeller Works”, Martin Hepperle presents an equation com-
bining a propeller’s flight speed and “ideal” efficiency. It is solely based on momentum 
theory, considering the momentum the propeller provides to the air  mass flowing 
through it. Thrust is produced by this repulsion so the energy (or power) spent on it is 
always lost, regardless of more or less other losses in addition.

Using the equation, different curves of equal power loading are drawn in an “ideal effi-
ciency” diagram. It shows only the most basic influence on a propeller’s efficiency, the 
repulsion losses in its slipstream (or wash), and neglects even the corresponding rota-
tional losses in its swirl, which are smaller. Blade number, area, and shape as well as 
twist  and airfoil  distribution  are  neglected  all  the  more.  All  losses  are  taken into 
account in the calculated “real” values, though.

Martin Hepperle generally demonstrates that high power loading is tolerable only at 
high speed if reasonable efficiency is required. Here, the specific cases are compared, 
that is the three propellers in cruise and climb each, using the data known from the 
performance calculations. This diagram shows indeed that power loading in relation to 
speed is the determining factor for a propeller’s efficiency:
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The three “ideal efficiency” curves for the respective  cruise power-loading are quite 
close to the diagram’s upper left corner, meaning quite good efficiency at low speeds. 
Due to much higher power loading in  climb, the respective “ideal efficiency” curves 
are closer to a diagonal, meaning lower efficiency even at higher speed. The calcu-
lated “real” efficiencies are marked below the “ideal” ones at their respective speeds.
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The example propeller is  a medium case in  this  comparison. The parkflyer’s  ideal 
cruise efficiency line is about the same as that of the Sr. Telemaster (which is actually 
some kind of big parkflyer) because their power loading is nearly the same. The park-
flyer is comparatively less powerful, so – at full power – its power loading is lower and 
hence its ideal climb efficiency line is higher than that of the Sr. Telemaster.

In the standard propeller diagram above, the difference between real and ideal effi-
ciency in cruise is somewhat bigger than in climb. In this “ideal efficiency” diagram, 
the difference is only slightly bigger in cruise because climb is flown at higher speeds 
where the ideal efficiency curves are flatter and the differences tend to be bigger.

That holds for both the parkflyer and the Sr. Telemaster. It even partly explains why 
the parkflyer’s differences are smaller than those of the Sr. Telemaster, which flies at 
distinctly higher speeds. Actually, the parkflyer’s differences should be even smaller 
for its slow speeds. However, its propeller’s “cheap” design results in less real effi-
ciency than a “better” design like that of the Sr. Telemaster’s propeller.

But even if the parkflyer’s propeller were “better” (smaller differences) it would be still 
less efficient due to its lower flight speeds. Only a bigger propeller, spinning slower for 
lower power loading, really helps efficiency. For instance, the APC 9x6 SlowFly pro-
peller (now used in place of the 6.9x6.3" toy propeller) spinning at 3185 (4930) rpm 
in cruise results in 117 (360) W/m2 power loading and 68% (60%) real efficiency.

The glider propeller is a special case here because it is so lightly loaded. Hence it is 
very efficient, anyway. Then, its real climb efficiency is quite close to the respective 
ideal efficiency because it is well-designed and – with its low pitch – better suited for 
climb than the other two propellers. Yet power loading in relation to speed is the pre-
dominant factor of efficiency even in this case since not only the propeller is lightly 
loaded but also the model flies significantly faster than the parkflyer in cruise and 
especially in climb.

Coefficient Comparison

The example parkflyer propeller is so “cheap” that there is no other way to get coeffi-
cients than employing a calculation tool. Then again, for “better” propellers like the 
Sr. Telemaster’s APC 17x12 E, the manufacturer calculated coefficients with a better 
tool, and there are even coefficients measured in a wind tunnel. That allows to com-
pare them all and this way assess the accuracy and usefulness of JavaProp.

It is called “a relatively simple tool” by its author Martin Hepperle in his “Validation” 
Web page and the results are called “acceptable”. We know from the performance 
calculations that this holds for the APC 17x12 E propeller.

Propeller coefficients are called “Performance Data” by APC and made available in the 
file “PER3_17x12E.dat”. The calculation methods used and their limitations are men-
tioned in the “Engineering” Web page. They let us expect reasonable though still not 
perfect results.

Even the coefficients measured in the UIUC wind tunnel (by J. B. Brandt, M. Selig) can 
be not perfectly correct because no wind tunnel measurements are. Still these values 
(published in Volume     1, APC chapter  , Thin Electric section) are deemed reliable here 
because  measurements  in  different  wind  tunnels  yield  reasonably  similar  results 
(Propeller  Measurements  Comparison).  So  the  coefficients  measured  at  rotational 
speeds between 2000 and 3400 rpm are used as reference in comparison with coeffi-
cients calculated for 2000, 3000, and 4000 rpm.
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In JavaProp, coefficients for 2000, 3000, and 4000 rpm were calculated using airfoil 
lift and drag coefficients for the Clark Y airfoil at the blade root and the ARA D 6% 
airfoil otherwise. First, airfoil coefficients for the Reynolds numbers 25,000 at root and 
50,000 otherwise were used and then, in a second set of calculations, those for the 
Reynolds numbers 50,000 at root and 100,000 otherwise. These airfoil coefficients are 
prepared in JavaProp and were chosen as best fit to the propeller.

All calculated propeller coefficient values turned out the same regardless of rotational 
speed. The respective lines in the diagram are equal. Only different airfoil coefficients 
made a noticeable difference in propeller coefficients.  Coefficient values for higher 
Reynolds (Re) numbers – matching higher rotational speeds – made for very slightly 
more thrust, slightly less power, and noticeably better efficiency.

The thrust coefficient cT curve is typical for this simple calculation tool (which neglects 
complex aerodynamic effects) and well-designed propellers (which have little to no 
blade stall): It is roughly a straight line at high advance ratios and comes close to 
horizontal at low ones. For higher Re numbers, the values are only very slightly higher 
at high advance ratios while they are distinctly higher at low ones.

The power coefficient cP curve is typical as well in that its high-advance-ratio part is 
an inverted parabola and its low-advance-ratio part is a horizontal line. The values for 
higher Re numbers are slightly lower at high advance ratios and even slightly higher 
at low ones.

Both the  cT and  cP curves for higher Re numbers are indented below 0.1 advance 
ratio. That is typical for JavaProp calculations and a manifestation of substantial but 
random blade stall predicted for low advance ratios (hence high power loading). This 
well-designed APC propeller shows far less of such indentations (blade stall) than the 
simple-design example toy propeller, even at the high power loading in climb.

At higher Re numbers, the airflow is “better” so thrust is higher and power lower, at 
least at higher (operating) advance ratios. That makes for noticeably better efficiency, 
which is essentially the quotient of both coefficients after all.
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APC must have used Reynolds (Re) number dependent airfoil lift and drag coefficients 
in their propeller coefficient calculations. They seem to have incorporated more com-
plex aerodynamic effects as well. At least, the respective coefficient curves are slightly 
different, like those for 2000, 3000, and 4000 rpm compared here, and they are not 
quite as schematic as curves calculated by JavaProp.

The thrust coefficient cT curve is still nearly straight at high advance ratios and comes 
close to horizontal at low ones. The power coefficient cP curve is still like an inverted 
parabola at high advance ratios but now it is sloped upwards at low ones. There are 
no indentations (random blade stall effects) at all and the curves differ only slightly 
also in the low-advance-ratio range.

Consistently,  thrust  coefficients  are slightly  higher at  higher rotational  speeds (Re 
numbers) while power coefficients are slightly lower. Consequently, efficiencies are 
noticeably better (higher) especially in the advance ratio range in which the propeller 
is operated (0.5 to 0.8).

Compared to the  JavaProp calculation results, lower power coefficients  cP over the 
whole advance ratio range let the efficiency η curve come closer to the propulsion effi-
ciency  η* curve. After all it is more efficient to produce about the same thrust with 
less power. And peak efficiency η is not only higher but also occurs at a higher ad-
vance ratio even though the maximum advance ratio is lower. Actually, that is distinc-
tive of “better” propellers, but here the calculation tool used by APC just lets the pro-
peller “look better” than JavaProp does.

Actually the curves look smooth but they are a bit wavy at closer inspection. That is 
probably due to the fact that the specified coefficient values have only three signifi-
cant figures (while they have five in JavaProp). The wave amplitude is bigger than the 
difference between the curves, but the waves are equal in all curves so these can be 
still compared.
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The coefficients measured in a wind tunnel (at 2000, 2500, 3000, and 3400 rpm) 
show the problem’s complexity. The coefficient curves are smooth but not a straight 
line or an inverted parabola. They have even four parts: [1] 0 to 0.25 advance ratio, 
[2] 0.25 to 0.45, [3] 0.45 to 0.72, and [4] 0.72 to 0.85. Each part has its own slope 
and curvature so they have to be considered separately.

The curves are different for different rotational speeds (Reynolds numbers), but now 
both the thrust coefficient cT curve and the power coefficient cP curve are higher for 
higher rotational speeds. Still, thrust increase with Re number is higher than power 
increase so efficiency increases as well.

Obviously, Re number matters most in the third part of both coefficient curves since 
the biggest differences are there. In this advance ratio range the propeller is working 
in cruise flight. In the fourth part, at the highest advance ratios, the propeller is not 
operated so the noticeable differences in both curves don’t actually matter. Yet it is 
worth noting that higher coefficient values also mean a shift to the right, to higher 
advance ratios. Hence, in the third and fourth curve parts, the efficiency curves are 
higher and more to the right and peak efficiency is at higher advance ratios.

In the second part, relevant for climb, there is a bit more thrust at higher Re numbers 
without actually needing more power. There is little increase of efficiency but it is not 
close to maximum, anyway, and does not really matter for climb. In the first part, 
relevant for take-off,  efficiency is meaningless but a bit  more thrust  at higher Re 
numbers may be helpful.

All in all, measured coefficients seem to make for better accuracy and validity of drive 
calculations. Even though they have been measured only for rotational speeds up to 
3400 rpm, they are still usable because the climb case (4500 rpm) is in the second 
part where the curves differ only faintly. The values measured at 2500 rpm are suit-
able for cruise, which is in the third part where the coefficient values are significantly 
different depending on rotational speed (Reynolds number). They could be even used 
for the climb case without much loss of accuracy.
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The three ways to come up with propeller coefficients are compared by the 3000 rpm 
case. The respective data sets are distinguished by line style in the diagram.

The solid lines show values calculated by JavaProp, based on airfoil data for Reynolds 
number 100,000. Both coefficients cP and cT are remarkably high. That might be due 
to JavaProp inherently over-estimating power and thrust, the used airfoil coefficients 
being optimistic, the zero-lift angle-of-attack being wrong, and the numeric represen-
tation of the propeller’s geometry being inherently incorrect.

Anyway, the dashed lines  – showing the values calculated by the propeller’s manu-
facturer APC with a better tool and based on correct geometry data  – are notably 
lower. However, these seem to be still  over-estimated because the values actually 
measured in a wind tunnel – the dotted lines – are even lower.

Lower coefficient lines mean lower maximum advance ratios and efficiencies η shifted 
to lower advance ratios. Most notably, the measured peak-efficiency advance ratio is 
considerably lower than calculated by both tools. The tool used by APC exaggerates 
efficiency while  JavaProp over-estimates both coefficients in a way that peak effi-
ciency is almost like measured. The related advance ratio is too high, but not even 
higher than calculated by the tool used by APC. This comparison illustrates that more 
pitch or advance ratio, respectively, provides the potential for better efficiency.

It also illustrates how the calculation tools more or less over-estimate coefficients or 
advance ratios, respectively, but under-estimate Reynolds number effects. For each 
set of coefficient values compared here, given thrust and airspeed values in climb and 
cruise, respectively, result in different advance ratios in the performance calculations. 
The higher the coefficient values are, the higher are the advance ratios.

Anyway, in case of the APC 17x12 E propeller, comparing the three options in the per-
formance calculations showed that measured coefficients gave not even more realistic 
results overall.  There seems to be no ideal way. Then again, imperfect  coefficient 
values is yet another deficiency that is of relatively little relevance in our calculations 
because power loading and speed are the most important factors.
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Efficiency

The APC 17x12 E is a “better” propeller and there are reliable coefficient values mea-
sured in a wind tunnel, even if for one pitch (12”) only. But it is possible to make an 
educated guess on how the coefficient values are modified by varying pitch and then 
see the implications for the propeller’s efficiency. This is just a simple experiment:

The propeller’s 12” pitch is scaled to 10”, 14.5”, 17”, 20”, and 23”. It stands to reason 
that the cT and cP coefficient curves are scaled by the same ratio horizontally, in the 
direction of the J-axis. Higher pitch (steeper blade angles) makes for more blade stall 
at low airspeed (low advance ratio J) and hence less thrust and more power demand. 
To represent that, the cT and cP curves are simply scaled down or up, respectively, but 
(arbitrarily) by only 30% or 31.5%, respectively, of the pitch scaling.
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This array of coefficient curves seems reasonable and – more important – typical. The 
efficiency η and propulsion efficiency η* curves are calculated from the scaled coeffi-
cient curves. Of course, a “square” 17x17 propeller would be excessive in practice, not 
to mention a 17x20 or even 17x23. They would have lower peak efficiencies and these 
at lower advance ratios than shown here. But this theoretical experiment just goes to 
illustrate that even a “perfect” propeller can have not more than 83% peak efficiency, 
and that only at 1.0 advance ratio, what requires excessively high pitch (17x20).

In practice, a pitch-to-diameter ratio higher than the APC 17x12 E’s 0.7 would hardly 
bring higher efficiency even with a “better” propeller like this one. But then again, the 
APC 17x10 E as well as the 8”, 7”, and 6” fine-pitch 17”-diameter variants actually 
have  lower peak  efficiencies.  So  the  highest  pitch-per-diameter  variant  available 
seems superior – for high flight speed and cruise, and even for climb (but not for 3D).

A naive explanation: The cT and cP curves intersect somewhere. Efficiency η is their 
ratio times the advance ratio J, so it is equal to J at the intersection. The closer this is 
to the maximum advance ratio, the more is maximum η limited by low J “on its left”.
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Or even simpler: They are in the J range where propulsion efficiency η* is low. This is 
too simplistic, though, and we need to know the operational cases climb and cruise.
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By a “quick and dirty” calculation with PropellerScanner and JavaProp, two 17” propel-
lers with different pitch had been compared for the Sr. Telemaster. Coefficient values 
as well as advance ratios are even more exaggerated than in the previous section.
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The same two propellers have been compared again by applying the coefficient values 
calculated by APC, which are closer to reality (even if the curves are somewhat wavy).
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As we know from the previous section, JavaProp over-estimates the coefficient values 
and especially the advance ratios in a way that efficiencies are not over-estimated but 
just at too high advance ratios. The cT and cP curves intersect at rather low advance 
ratios and the two efficiency η curves are distinctly apart from each other and hence 
have clearly different peak values.

Then  again,  the  coefficient  calculations  done  by  APC  just  slightly  over-estimate 
advance ratios but in a way that efficiencies are both over-estimated and at too high 
advance ratios. The cT and cP curves intersect at rather high advance ratios and the 
two efficiency η curves are close to each other and have nearly equal peak values.

The respective climb and cruise advance-ratios are known from the performance cal-
culations. In all four cases (both propellers, both coefficient calculation tools), cruise 
flight speed had been given as 12 m/s, to be achieved by an appropriate power set-
ting. As a matter of course, there is virtually the same thrust as well as the same 
propulsion efficiency  η*.  The lower-pitch 17x10 has to spin faster than the 17x12 
because it gets only at lower advance ratios. The two propellers’ cruise advance-ratios 
are closer to each other if the coefficients calculated by APC are used but they are yet 
in the same range in any case.

The climb flight speeds resulted as best climb speeds from the respective performance 
calculations. To compensate for the different pitches, a 5S battery was assumed for 
the 17x10 propeller but a 4S battery for the 17x12. If the coefficients calculated with 
JavaProp are used, the best climb speeds with both propellers happen to be equal 
(15 m/s) while – consequentially – the respective advance ratios are clearly different. 
The opposite if the coefficients calculated by APC are used: The best climb speeds are 
clearly different (17.5 m/s or 14 m/s for the 17x10 or 17x12, respectively) while  – 
again consequentially – the advance ratios are nearly equal. Again, the two propellers’ 
climb advance-ratios are yet in the same range.

If the coefficients calculated with  JavaProp are used, the 17x12 propeller is clearly 
more efficient than the 17x10, both in cruise (69%/58%) and climb (61%/54%). If 
the coefficients calculated by APC are used, the 17x12 is only slightly better in cruise 
(84%/82%) and even less  efficient  in  climb (72%/75%).  In view of  the  previous 
comparisons, the efficiency values in the first case (JavaProp) are probably close to 
reality while they are far too high in the second case (APC). The respective advance 
ratios are too high in the second case and far too high in the first.

All that makes it virtually impossible to predict which propeller would give the best 
efficiencies on the Sr. Telemaster. A mere guess is that reality could be in between, a 
compromise or blend of the two cases: Advance ratios clearly lower than in both cases 
and efficiency values like in the first case would result in only slightly higher efficien-
cies for the 17x12 propeller in both cruise and climb. That in turn would mean the effi-
ciency difference is of little relevance in practice and the 17x12 may be just the best 
propeller with a 4S battery and the 17x10 with a 5S.

There is no way to bring this to an issue since there are no wind tunnel measurements 
for the APC 17x10 E propeller. There is only an analogy, that is several propellers of 
same shape and diameter but different pitch, which have been measured in a wind 
tunnel. Not knowing any operational climb and cruise cases for them, and considering 
that coarse- and fine-pitch propellers are meant for  different applications,  we can 
merely see how the respective efficiency η curves compare to each other.

(For information about the measurements see: Brandt, J.B. and Selig, M.S., "Propeller 
Performance Data at Low Reynolds Numbers", 49th AIAA Aerospace Sciences Meeting, 
AIAA Paper 2011-1255, Orlando, FL, January 2011.)
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Propellers of same diameter but different pitches are loosely called a “propeller family” 
here. That with the most members (pitches) measured at UIUC (by J. B. Brandt, M. 
Selig) is the APC 8x_ Sport. Their design is different from that of the APC E (Electric) 
propellers but the measured coefficient curves’ shape is equally complex. We compare 
them to each other (family members) only, so this comparison seems meaningful:
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APC 8x_ Sport  Propeller Family  –  measured at 6000 rpm
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In practice, the  cT curves do not intersect like in the theoretical experiment above. 
There is an irregular pattern of cT and cP curve intersections in that the 8x7 deviates 
and there is no such intersection in case of the 8x9 and 8x10 propellers.

The pattern of efficiency η curves is irregular as well. The 8x4, 8x5, 8x8, and 8x10 
have higher and higher peak efficiencies at higher and higher advance ratios, as would 
be expected. Indeed there is a peak-efficiency advantage of coarse pitch over fine 
pitch. But the 8x7 has higher peak efficiency than the 8x8 yet at the same advance 
ratio as the 8x6, and even relatively high efficiency at lower advance ratios – that is 
exceptionally good. The 8x6 and the 8x9 have their respective efficiency peaks at the 
expected advance ratios. But the 8x6 has too low efficiency and the 8x9 has even 
lower peak efficiency than the 8x8. Only the 8x10 duly has the highest peak efficiency 
at the highest advance ratio, which is not even 1, though.

The differences in peak efficiency over a propeller family’s pitch range, exceptionally 
efficient as well as less efficient members of a propeller family, the lower efficiencies 
of the 8” Sport propellers compared to the 17” Electric propellers – all this could be 
more or less predictable by the calculation tools. To check, both tools are compared to 
measurement.

Again, we implicitly assume the measured coefficients to be close to reality so they 
are used as reference. Conversely, that means the exceptions – especially the 8x7 – 
are just that but not aberrations, or errors in measurement. This is supported by the 
fact  that the measured coefficient curves are consistent  and by the long-standing 
knowledge that such exceptions, or variations exist in propeller families.
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APC published “performance data” for their APC 8x_ Sport propeller family. These are 
calculated with an advanced tool so they should be a good approximation to the real 
coefficient  values.  Yet  the  tool  produces  significant  deviations  from the  measured 
coefficient curves’ shape, especially the  cP curves’, and it is not able to identify any 
“exceptions” in a propeller family:
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APC 8x_ Sport  Propeller Family – calculated for 6000 rpm
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This is a consistent array of coefficient curves with a regular pattern of cT and cP curve 
intersections, as would be expected from a calculation tool. That makes for consis-
tently higher and higher peak efficiencies at higher and higher advance ratios – with-
out exceptions.

Like in the cases before, efficiency η and advance ratio J are overestimated in APC cal-
culations. The efficiency η curves come close to the propulsion efficiency η* curves, 
hence differences in efficiency are exaggerated.

The cT curves somewhat resemble those in the previous diagram while the cP curves 
are sloped upwards towards higher advance ratios J. That has been seen before in the 
previous section but there is no obvious explanation.
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Since geometry data are published by APC it is possible to calculate coefficients with 
JavaProp,  which is a simpler tool but may even yield better results than the APC 
calculations in that it does not overestimate efficiencies and their differences as well 
as it does not provide cP curves that are sloped upwards. But it is not able to identify 
any “exceptions” in a propeller family, either:
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APC 8x_ Sport  Propeller Family – calculated for 6000 rpm
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This is again a consistent array of coefficient curves with a regular pattern of cT and cP 

curve intersections that makes for consistently higher and higher peak efficiencies at 
higher and higher advance ratios – without exceptions.

Unlike in the cases before, JavaProp does not overestimate the advance ratio J here 
but even slightly underestimates it instead. The efficiency η curves are overestimated 
now because the power coefficients cP are underestimated.

The  cT curves as well as the  cP curves are indented at low advance ratios J, what is 
typical for JavaProp (presumably due to predicted blade stall). There are “waves” in 
the  cP curves of the coarse-pitch variants that are similar to those in the measured 
curves so this seems indeed more realistic than the APC calculations.

To sum up, a rule “higher pitch means higher peak efficiency” would pertain but there 
may be “positive” and “negative” exceptions which render it useless. The rule would 
apply to high-speed and cruise flight, but not necessarily to climb. The differences 
may be small. Fine-pitch propellers with low peak-efficiency are anyway meant for 3D 
and similar applications, and coarse-pitch propellers are meant for special applications 
(speed) as well. Then, efficiency depending on pitch is of relatively little relevance in 
our calculations because design and size (diameter), power loading, and speed are the 
most important factors. There seems to be no reliable way to identify the most effi-
cient member of a propeller family without measured coefficient values for all of its 
members. So peak efficiency is not a viable selection criterion.

47

η*

η

cT

cP

8x5     8x6   8x7    8x8   8x9

JavaProp 
calculation

https://www.apcprop.com/technical-information/file-downloads/


Analyzing Electric Model-Airplane Drives Propeller Illustration

Propeller Pitch

Pitch is a general, context-dependent term. In the section Propeller Example, it was 
used for the most basic definition, that is local pitch H. A propeller’s nominal pitch Hn 

is often specified as the local pitch at 75% of the blade radius R. This is a “geometric” 
definition meaning the distance traveled by the propeller in one turn if it were a per-
fect “air screw” and the blade airfoil’s chord line would represent its thread pitch.

There is an “aerodynamic” definition as well. Since thrust is generated by repulsion, 
there  is  always  some  slippage,  except  when  no  thrust  is  generated  at  a  certain 
advance ratio. This in turn is actually the ratio of a flight speed and a circumferential 
blade-tip speed but is colloquially called “pitch speed”. Not only this characteristic 
speed is known from the performance calculations but others as well. They can be 
converted into the distance really traveled in one turn and that is called pitch as well:

Type of Model 55” retro parkflyer 100” thermal glider 95” Sr. Telemaster

Propeller Günther 6.9x6.3” aero-naut 14x8” APC 17x12 E

Pitch in inches:

nominal 6.3      96% 8.0      98% 12.0      81%

measured at 0.75·R 6.6   100% 8.2   100% 14.8   100%

at “pitch speed” 5.8      88%|100% 9.7   119%|100% 16.7   113%|100%

at maximum speed 4.5      69%|78% 9.1   111%|94% 13.6      92%|82%

in cruise 3.9      59%|67% 7.9      97%|81% 13.1      88%|79%

in climb 3.1      47%|54% 5.7      70%|59%    9.0      61%|54%

The pitch at 0.75·R used here is as “measured” by  PropellerScanner from front and 
side views of the propeller and displayed in JavaProp. It is used as reference (100%) 
because the propeller coefficients have been calculated from the measured geometry 
and, in turn, the performance calculations are based on them.

In case of the parkflyer propeller, and the glider propeller as well, the measured value 
fairly  conforms to  the  specification  (nominal  pitch).  Obviously,  measuring  the  Sr. 
Telemaster propeller’s geometry did not go well as its measured pitch is considerably 
bigger than the nominal. Still the performance calculations are based on it.

The parkflyer propeller with its flat-plate airfoil would be expected to have zero thrust 
when traveling at its measured (geometric) pitch since the blades would work at zero 
angle-of-attack (AoA) then. Its real (aerodynamic) pitch is smaller, though, because 
its local pitch distribution is disadvantageous. The other two propellers are “better” as 
they feature both a suitable local pitch distribution and more efficient, cambered blade 
airfoils (which have a negative zero-lift AoA). Hence their zero-thrust pitch is substan-
tially bigger than their nominal or even measured pitch.

This zero-thrust pitch, also called a propeller’s “aerodynamic pitch” here, is used as an 
additional reference (100%) for a pitch comparison in descending order. At maximum 
straight-and-level flight speed, the propeller is working at high rotational speed and 
low blade-AoA. In cruise flight, rotational speed is low and blade-AoA is higher. In 
climb, blade-AoA is even higher – although rotational speed is high – because thrust is 
big. The higher blade-AoA, the higher is slippage and the lower is real pitch.
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This order of pitches is common to all propellers, but the relative values can be quite 
different. A propeller’s aerodynamic pitch may be even higher than its geometric pitch 
(second and third propeller) but it may be lower as well (first propeller).

A “better” designed propeller like the second, which is moreover operated at relatively 
low power loading and high flight speed, has relatively high aerodynamic pitches over-
all. The third propeller, which is “better” designed as well, is operated at even higher 
flight speed but substantially higher power loading, so its relative aerodynamic pitches 
are not quite as high. The first propeller is operated at slow flight speed and substan-
tial power loading, and is a “cheap” design, which is why its relative aerodynamic 
pitches are the lowest overall.

The higher a propeller’s efficiency – due to design as well as power loading and flight 
speed – the higher are relative pitches. In the end it seems that, depending on effi-
ciency, aerodynamic pitch can be 10% to 20% higher than geometric pitch. Then, not 
only aerodynamic “pitch speed” but even maximum level-flight speed can be higher 
than geometric “pitch speed”, but only with a slick airplane and not with a draggy one. 
That holds even independent of the propeller-coefficient calculation’s quality.

There have been several deficiencies in the process of calculating the coefficients for 
the APC 17x12 E propeller. The front and side view photos are obviously inexact. Pro-
cessed with PropellerScanner, they result in even 14.8” pitch at 0.75·R while the really 
good pictures made at UIUC result in only 13.6”. Then, there was a systematic fault in 
applying PropellerScanner as the geometry “digitized” at UIUC shows only 12.5” pitch 
at 0.75·R what is close to the nominal value. In JavaProp, which is a simplified tool 
already, the ARA D 6% blade airfoil at Reynolds number 100,000 has been used. All 
that made for exaggerated geometric as well as aerodynamic pitch values:

APC 17x12 E UIUC “digitized” geometry PropellerScanner from photos

wind tunnel measurements JavaProp calculations

Pitch in inches:

nominal 12.0      96% 12.0      81%

measured at 0.75·R 12.5   100% 14.8   100%

at “pitch speed” 14.6   116%|100% 16.7   113%|100%

at maximum speed 11.8      94%|81% 13.6      92%|82%

in cruise 11.2      90%|77% 13.1      88%|79%

in climb    7.7      61%|53%    9.0      61%|54%

The absolute values are indeed substantially lower if the performance calculations are 
done with measured propeller coefficients. Yet the difference between aerodynamic 
and geometric pitch is even bigger, and the relative values differ by only 0 to 3 per-
cent steps.

This comparison of pitch values shows more sharply (than the Coefficient Comparison 
section) what to expect from imperfect  propeller coefficient values: For the thrust 
needed at certain flight speeds, too low rotational speeds will  be predicted by the 
performance calculations. Torque and even power values will be less affected.

49



Analyzing Electric Model-Airplane Drives Propeller Illustration

Pitch Distribution

The “cheap” example propeller has elliptic blade planform and flat-plate blade airfoil. 
It has a peculiarly simple distribution of twist angles and pitch over the blade radius, 
called  local twist angle and pitch, respectively. The  PropellerScanner results (in the 
Propeller Example section) suggest a linear distribution of pitch H as shown here:
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Günther 6.9x6.3 – Local Pitch and Twist-Angle Distribution
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Only at 0.70·R (not at 0.75·R as usual) local pitch  H is equal to the specified, or 
nominal pitch Hn. This pitch, constant over the whole blade radius, would result in cor-
responding twist angles β(Hn), which are the local “advance angles” in case the propel-
ler advances at its “nominal-pitch speed”. Since the actual local pitch H is smaller be-
low 0.70·R and bigger above, the actual local twist angles β(H) are lower or higher, re-
spectively, than the local advance angles at “nominal-pitch speed”. In this case, there 
would be positive local blade angles-of-attack α above 0.70·R and negative below.

If the propeller advances at a certain advance ratio J, then the distance h (here called 
pitch as well) that it travels in one rotation is proportional (by factor J) to the distance 
that one blade tip travels circularly in this rotation. The ratio of these two distances is 
the tangent of the advance-angle φ, so this angle is the ratio’s arc-tangent. Since the 
distance h is constant but the circular distance is proportional to the radius, the local 
advance-angles φ at inner radius locations are bigger than at the blade tip.

Correspondingly, the local twist angles β(H) are a ratio’s arc-tangent as well, now the 
ratio of the local pitch H and the distance traveled circularly at the radius location. Of 
course, the latter is again proportional to the radius but the former is not constant 
(like h) so the twist-angle distribution is even different from the advance-angle distri-
bution in the “pitch speed” case. At any radius location r/R, the local angle-of-attack α 
is the difference between twist-angle β(H) and advance-angle φ.
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In this diagram, the twist-angle distribution β(H) is repeated as a yellow dotted line to 
make it unobtrusive. It is used to subtract different advance-angle distributions φ for 
characteristic  operating points,  giving the respective angle-of-attack distribution  α. 
The advance-angle distributions φ are calculated including an “induced advance ratio” 
to allow for an average slipstream speed. That makes for angle-of-attack distributions 
α which are at least closer to reality than some neglecting the slipstream at all.

This holds especially in the static case (J=0.00) in which the angle-of-attack α is virtu-
ally the same over nearly the whole radius. This is an approximation because slip-
stream speed is actually not equal over the radius (but smaller towards root and tip). 
Still it is interesting to see that, despite high “static” slipstream speed, α is even about 
15°. That may explain why  JavaProp indicated completely stalled blades at low ad-
vance ratios. Yet the propeller seems to be designed to the static case.

The opposite case, zero thrust or “pitch speed” (J=0.84),  is just as remarkable in that 
the blade’s most effective outer part  (r/R>0.6) has still  positive angle-of-attack  α 
while the inner part has negative.  JavaProp says that 22% of the blade are stalled 
and this must be its inner part. Obviously, positive and negative local thrust balance 
each other so that overall thrust T is zero. That is inefficient and the reason why this 
propeller’s “pitch speed” is even 8% lower than its nominal pitch would suggest.

The climb (J=0.45) and cruise (J=0.56) cases delimit the narrow “band” in which the 
propeller is operated. Just for information, the dashed line delimits the even narrower 
band (J=0.45 … 0.50) in which no blade stall occurs (according to JavaProp). Angle-
of-attack α is negative in the blade’s not relevant inner 30% and increasingly positive 
towards the tip where it approaches 10°. That is below the flat-plate airfoil’s stall limit 
so there is no blade stall. At higher advance ratios, there must be negative stall at the 
slower moving inner blade parts. There seems to be no obvious rationale.
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The “better” APC 17x12 E propeller has a complex blade planform and efficient cam-
bered blade airfoils. Its geometry has been meticulously “digitized” at the UIUC. It 
shows pitch  H and twist-angle  β(H) distributions close to the nominal pitch  Hn and 
nominal-pitch  twist-angle  (or  “nominal-pitch  speed”  advance-angle)  β(Hn) distribu-
tions, respectively:
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Below 0.3·R, pitch H and twist-angle β(H) plummet to a low value. From a “kink” at 
0.3·R, the blade is “twisted back” until it reaches the hub. Presumably that is because 
the hub is relatively (to its diameter) thin so the blade must end there at a small twist 
angle. However, the blade’s inner 30% are not relevant, anyway.

Nowhere in the outer, effective 70% is local pitch H equal to nominal pitch Hn, not at 
0.75·R either. It is lowest at  0.65·R and increases towards  0.3·R. As the difference 
between  β(H) and  β(Hn) suggests, this makes for an increasing geometric angle-of-
attack  αgeo and is probably intended. Towards the tip,  H increases as well  what is 
actually a geometric wash-in. Usually there is washout towards the tip (to avoid tip 
stall) so there is no obvious rationale as far as only blade geometry is considered.

The cambered blade-airfoils’ aerodynamic angle-of-attack  αaero has to be included in 
the consideration.
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The local twist-angle distribution β(H) is not just repeated here (as an overlay yellow 
dotted line) but is shifted up by the local zero-lift angle-of-attack α0, which is negative 
for cambered airfoils. Due to this camber, the propeller advances “aerodynamically” 
faster than “geometrically”.

At their “Engineering” Web page, APC just mentions blending different airfoils from 
root to tip or some washout near the tip, respectively. By experimenting, α0=-3° was 
found to be a good value overall since it made the twist-angle distribution β(H) virtu-
ally congruent with the advance-angle φ curve in the zero-thrust (“pitch speed”) case, 
at least from 0.3·R to 0.7·R. From 0.7·R to 1.0·R, there was still geometric wash-in 
but it could be compensated by linearly reducing α0 to -1° at the tip, what is equiva-
lent to aerodynamic washout (less camber at the tip).

So possibly APC designed a constant “aerodynamic pitch” into the propeller, that is 
from 0.3·R to 1.0·R which is actually the effective part. In the “pitch speed” case 
(J=0.86), the aerodynamic angle-of-attack  α is all zero as a consequence. In cruise 
flight (J=0.66),  α is all positive but bigger towards the root where circular speed is 
slower, so it seems appropriate as compensation. In climb (J=0.45), α goes up to 13°, 
what may be even possible without stall, but is still merely 5.5° at the tip. Only in the 
static case (J=0.00), α goes from 11° to 29° so serious blade stall has to be expected.

This  is  only  a  simple  estimate  since  equal  (average)  slipstream speed  has  been 
assumed over the whole propeller disk and the swirl has been entirely neglected. But 
it could come close to reality in the climb and cruise cases and even really close in the 
“pitch  speed” case:  no slipstream overall,  no positive  or  negative  local  angles-of-
attack either (except in the not relevant inner 30%), and no swirl.

If nothing else, this illustrates how and why the APC 17x12 E is a “better” propeller 
than the “cheap” Günther toy propeller.
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Momentum Theory

At his Web page “How a Propeller Works”, Martin Hepperle sketches a “stream tube 
passing through a propeller”. The stream is accelerated by the propeller what makes 
for repulsive thrust  T. It is faster than the surrounding air stream and hence also 
called slipstream. It is contracted while it is accelerated (because pressure is virtually 
constant), half of the acceleration and contraction taking place in front of the propeller 
and half behind. So, if the difference to the surrounding airspeed  v far behind the 
propeller is  Δv, the difference when passing through the propeller disk is  Δv/2. The 
conservation-of-momentum law allows to draw an equation for thrust:

T = π
4

D2 ⋅ (v + Δv
2 ) ⋅ ρ ⋅ Δ v = ṁ⋅Δ v

The first term is the propeller disk area, the second is the speed of the slipstream 
passing through the disk, so their product is the volume flow through the propeller. 
That multiplied by air density is the mass flow ṁ which, multiplied by the speed 
difference, results in the thrust force. This in turn is actually calculated from the thrust 
coefficient:

T = cT ⋅ρ⋅n2⋅D4

We equate both formulas, leaving out the terms equal on both sides:

π
4

⋅(v + Δ v
2 )⋅Δv = cT⋅n2⋅D2

Expanding, replacing v by J·n·D, rearranging, and multiplying by 2 results in

Δ v2 + 2⋅J⋅n⋅D⋅Δ v −
8⋅cT ⋅n2⋅D2

π
= 0   – another quadratic formula, with

k1 = 2⋅J⋅n⋅D   and  k 2 = −
8⋅cT⋅n2⋅D2

π
  as its combined constants.

The discriminant is always negative since we consider only positive variable values:

Δ = k2 −
k1

2

4
= −(8⋅cT

π
+ J2)⋅n2⋅D2 < 0

So there are two possible solutions:

Δ v1,2 = −
k1

2
± √ k1

2

4
− k2

Δv1 (with positive square root) is the correct solution since Δv2 would be negative:

Δ v = ( √ J2 +
8⋅cT

π
− J)⋅n⋅D   appears like a modification of  v = J⋅n⋅D

Under the square root, the advance ratio  J is complemented by a term essentially 
being the thrust coefficient cT. Subtracting J leaves only this complement to J, which is 
multiplied by n·D to give the speed added in the slipstream, just like J is multiplied by 
n·D to give the surrounding airspeed. So the term in parentheses is actually an added 
advance ratio ΔJ, half of which is added at the propeller disk. Exactly like a wing has 
an additional induced angle-of-attack when it produces lift, the propeller’s advance 
ratio is increased by an “induced advance-ratio” when it produces thrust.
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The power needed to accelerate the slipstream is unavoidably dissipated. The usual 
equation involves mass flow and speed difference, but replacing the product of both 
by thrust T (first equation on previous page) gives a more illustrative equation:

Pdiss = ṁ
2

⋅Δ v2 = T⋅Δ v
2

That means the propeller dissipates power proportional to the thrust it produces and 
to the speed added to the slipstream when it passes the propeller disk. That in turn 
corresponds to the equation for thrust power, which is the propeller’s actual business:

P thrust = T⋅v

Propulsion efficiency η* (aptly named for a propeller) is hence defined as the ratio of 
thrust power (effective power) and thrust power plus dissipated power:

η* =
P thrust

P thrust + Pdiss

= T⋅v

T⋅v + T⋅Δ v
2

= v

v + Δv
2

This is the classic explanation for the fact that thrust power is more efficiently pro-
duced by slightly accelerating a big propeller’s slipstream than by strongly accelerat-
ing a small one’s. Especially at low airspeeds v, the speed added to the slipstream Δv 
has to be low as well to keep propulsion efficiency η* at a reasonable level.

Replacing v by J·n·D and Δv by the equation drawn above yields:

η* = J

J + Δ J
2

= 2⋅J

J + √ J2 +
8⋅cT

π

= 2

1 + √ 1 +
8⋅cT

π⋅J2

That allows to calculate propulsion efficiencies η* from measured or calculated data, 
and in fact that has been done for the diagrams shown in the Coefficient Comparison 
and Efficiency sections.

The third form may seem more elegant than the second but there will be a division by 
zero if advance ratio J is zero. This can be avoided by setting propulsion efficiency η* 
to zero for zero advance ratio J and using the third form of the equation for advance 
ratios  J greater than zero. Anyway, the values are higher than those calculated by 
JavaProp, but by 1.2% at most in the curve’s middle part.

The here so-called “induced advance-ratio” has been illustratively used (to calculate 
local “angles-of-advance” φ) in the Pitch Distribution section:

Ji =
Δ J
2

=
1
2 ( √ J2 +

8⋅cT

π
− J)

While the propeller is traveling at advance ratio J with respect to the free air-stream, 
it is actually in the slipstream, which is by Δv/2 faster than the surrounding free air-
stream, what is expressed by the induced advance ratio Ji. The propeller is “slipping” 
in the air-stream, what is called slippage, and hence also the term slipstream. The 
propeller blades see an angle-of-attack smaller than that corresponding to the free-
air-stream advance ratio J due to half of the added slipstream speed, represented by 
the induced advance ratio Ji. That gives another definition of propulsion efficiency:

η* = J
J + Ji
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Drive Illustration

Applied Solution

Combining a motor-gear combination and a propeller yields a drive by this chapter’s 
word usage. The equation for the drive’s rotational speed n, derived in the Applicable 
Solution section, is now applied to every advance ratio  J present in the results of a 
propeller calculation or measurement, respectively. The polynomial constants K1, K2, 
and K3 are calculated beforehand using the motor, gear, and propeller constants given 
in the case at hand. (“Motor” includes battery and ESC, just to put it simply.)

So every – calculated or measured – propeller power coefficient cP results in a certain 
rotational speed n, which in turn is converted into flight speed v using the respective 
advance ratio J. Finally, all interesting figures are calculated for every resulting flight 
speed so they can be plotted in diagrams over the drive’s whole flight speed range. 
That means flight speeds from zero (“static”) to “pitch speed” (zero thrust) because in 
most if not all cases no negative-thrust coefficients (windmilling propeller) are calcu-
lated or measured.

The formulas have been taken from the sections Applicable Solution, Mechanical-Aero-
dynamic  Conversion,  Mechanical-Mechanical  Conversion,  and  Characteristic  Speeds 
and Quantities, and they are applied in the following order:

n =
K2 + √K2

2 + cP K3 K1

cPK 3

[s-1] v = J⋅n⋅D [m/s]

T = cT ⋅ρ⋅n2⋅D4 [N] P thrust = T⋅v [W]

Pmech = cP⋅ρ⋅n3⋅D5 [W] Mg =
Pmech

2⋅π⋅n
⋅100 [Ncm]

I = (Ub −
ig

kV

⋅n⋅60)⋅1
R

[A] Pel = Ub⋅I [W]

ηp =
P thrust

Pmech

⋅100 [%] ηd =
Pmech

Pel

⋅100 [%] η =
Pthrust

Pel

⋅100 [%]

Rotational speed n [s-1] is rotations per second here because that is required for pro-
peller calculations. Hence Mg needs no multiplication by 60 but it is multiplied by 100 
to have convenient numbers in [Ncm] instead of [Nm]. Of course, there may be addi-
tional columns with  n [min-1],  v [km/h], or  v [mph] for convenience as well. Current 
(amperage) I needs the multiplication by 60 here. Efficiencies are multiplied by 100 to 
have convenient two-digit numbers in [%].

The calculations are performed twice, for full-power and for cruise-power setting.
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The  full-power  case  is  meant  for  climb.  The  following  table  is  calculated  for  our 
example drive (motor/gear and propeller) at its nominal 8.4 V battery voltage  Ub. 
Additional columns as well as efficiencies are left out for lack of page width.

J cP cT n v T Pthrust Pmech M I Pel

[-] [-] [-] [1/min] [m/s] [N] [W] [W] [Ncm] [A] [W]

0,00 0,12445 0,13799 6804 0,0 2,04 0,0 36,5 5,13 8,5 71,7

0,05 0,08813 0,12009 7413 1,1 2,11 2,3 33,4 4,31 7,3 61,2

0,10 0,10927 0,14835 7037 2,1 2,35 4,8 35,5 4,81 8,1 67,7

0,15 0,11751 0,15737 6907 3,0 2,40 7,2 36,1 4,99 8,3 69,9

0,20 0,12102 0,15838 6854 4,0 2,38 9,5 36,3 5,06 8,4 70,8

0,25 0,12248 0,15489 6833 5,0 2,31 11,5 36,4 5,09 8,5 71,2

0,30 0,12170 0,14826 6844 6,0 2,22 13,3 36,4 5,07 8,5 71,0

0,35 0,11894 0,14045 6886 7,0 2,13 14,9 36,2 5,02 8,4 70,3

0,40 0,10057 0,12027 7183 8,4 1,98 16,6 34,7 4,62 7,8 65,2

0,45 0,09208 0,10832 7337 9,6 1,86 17,9 33,9 4,41 7,4 62,5

0,50 0,08585 0,09705 7457 10,9 1,72 18,7 33,2 4,25 7,2 60,4

0,55 0,07852 0,08472 7609 12,2 1,57 19,1 32,2 4,04 6,9 57,8

0,60 0,07029 0,07188 7792 13,6 1,39 19,0 31,0 3,80 6,5 54,6

0,65 0,06112 0,05839 8017 15,2 1,20 18,2 29,3 3,49 6,0 50,8

0,70 0,05088 0,04423 8298 16,9 0,97 16,5 27,1 3,12 5,5 45,9

0,71 0,04867 0,04128 8364 17,3 0,92 16,0 26,5 3,03 5,3 44,8

0,72 0,04643 0,03830 8432 17,7 0,87 15,4 25,9 2,94 5,2 43,6

0,73 0,04420 0,03524 8502 18,1 0,81 14,7 25,3 2,84 5,0 42,4

0,74 0,04189 0,03225 8577 18,5 0,76 14,0 24,6 2,74 4,9 41,1

0,75 0,03955 0,02924 8656 18,9 0,70 13,2 23,9 2,64 4,7 39,7

0,76 0,03711 0,02614 8740 19,4 0,64 12,4 23,1 2,52 4,6 38,3

0,77 0,03462 0,02300 8830 19,8 0,57 11,4 22,2 2,40 4,4 36,7

0,78 0,03212 0,01988 8924 20,3 0,51 10,3 21,3 2,28 4,2 35,1

0,79 0,02959 0,01676 9022 20,8 0,44 9,1 20,2 2,14 4,0 33,4

0,80 0,02709 0,01346 9124 21,3 0,36 7,6 19,2 2,01 3,8 31,6

0,81 0,02441 0,01021 9238 21,8 0,28 6,1 17,9 1,85 3,5 29,7

0,82 0,02167 0,00692 9360 22,4 0,19 4,3 16,6 1,69 3,3 27,6

0,83 0,01894 0,00366 9488 23,0 0,11 2,4 15,1 1,52 3,0 25,4

0,84 0,01616 0,00038 9626 23,6 0,01 0,3 13,4 1,33 2,7 23,0

0,85 0,01327 -0,00302 9777 24,2 -0,09 -2,2 11,6 1,13 2,4 20,4

The first three columns are just copied from the JavaProp propeller calculation results. 
The tool increased the advance ratio J in 0.05 steps until 0.70 and then in small 0.01 
steps until at 0.85 the thrust coefficient cT got smaller than zero (windmilling propel-
ler). The following column shows the propeller’s rotational speed n [min-1] as rotations 
per minute since this is the figure shown in diagrams.
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The following cruise-power table is calculated assuming the ESC is set to an equiva-
lent 0.6 voltage reduction factor, giving 5.0 V equivalent battery voltage Ub. The re-
quired factor is known from the performance calculations.

J cP cT n v T Pthrust Pmech M I Pel

[-] [-] [-] [1/min] [m/s] [N] [W] [W] [Ncm] [A] [W]

0,00 0,12445 0,13799 4507 0,0 0,90 0,0 10,6 2,2 4,1 20,7

0,05 0,08813 0,12009 4823 0,7 0,89 0,6 9,2 1,8 3,5 17,4

0,10 0,10927 0,14835 4629 1,4 1,02 1,4 10,1 2,1 3,9 19,4

0,15 0,11751 0,15737 4561 2,0 1,05 2,1 10,4 2,2 4,0 20,1

0,20 0,12102 0,15838 4533 2,6 1,04 2,7 10,5 2,2 4,1 20,4

0,25 0,12248 0,15489 4522 3,3 1,01 3,3 10,5 2,2 4,1 20,5

0,30 0,12170 0,14826 4528 4,0 0,97 3,8 10,5 2,2 4,1 20,5

0,35 0,11894 0,14045 4550 4,6 0,93 4,3 10,4 2,2 4,0 20,2

0,40 0,10057 0,12027 4705 5,5 0,85 4,7 9,8 2,0 3,7 18,6

0,45 0,09208 0,10832 4784 6,3 0,79 5,0 9,4 1,9 3,6 17,8

0,50 0,08585 0,09705 4845 7,1 0,73 5,1 9,1 1,8 3,4 17,2

0,55 0,07852 0,08472 4921 7,9 0,66 5,2 8,7 1,7 3,3 16,4

0,60 0,07029 0,07188 5011 8,8 0,58 5,1 8,2 1,6 3,1 15,5

0,65 0,06112 0,05839 5119 9,7 0,49 4,7 7,6 1,4 2,9 14,4

0,70 0,05088 0,04423 5251 10,7 0,39 4,2 6,9 1,2 2,6 13,0

0,71 0,04867 0,04128 5281 10,9 0,37 4,0 6,7 1,2 2,5 12,7

0,72 0,04643 0,03830 5312 11,2 0,35 3,9 6,5 1,2 2,5 12,4

0,73 0,04420 0,03524 5344 11,4 0,32 3,7 6,3 1,1 2,4 12,1

0,74 0,04189 0,03225 5377 11,6 0,30 3,5 6,1 1,1 2,3 11,7

0,75 0,03955 0,02924 5412 11,8 0,27 3,2 5,8 1,0 2,3 11,4

0,76 0,03711 0,02614 5450 12,1 0,25 3,0 5,6 1,0 2,2 11,0

0,77 0,03462 0,02300 5489 12,3 0,22 2,7 5,3 0,9 2,1 10,6

0,78 0,03212 0,01988 5529 12,6 0,19 2,4 5,1 0,9 2,0 10,2

0,79 0,02959 0,01676 5571 12,8 0,17 2,1 4,8 0,8 1,9 9,7

0,80 0,02709 0,01346 5614 13,1 0,14 1,8 4,5 0,8 1,9 9,3

0,81 0,02441 0,01021 5661 13,4 0,10 1,4 4,1 0,7 1,8 8,8

0,82 0,02167 0,00692 5711 13,7 0,07 1,0 3,8 0,6 1,7 8,3

0,83 0,01894 0,00366 5763 14,0 0,04 0,5 3,4 0,6 1,6 7,8

0,84 0,01616 0,00038 5817 14,3 0,00 0,1 3,0 0,5 1,4 7,2

0,85 0,01327 -0,00302 5876 14,6 -0,03 -0,5 2,5 0,4 1,3 6,6

The first three columns are exactly like in the previous table since they have been cal-
culated in JavaProp for one rotational speed only (see previous chapter). The follow-
ing columns are different (lower values) due to the reduced battery voltage Ub. Like in 
the previous table, all  calculated values are displayed with few digits but have far 
more precision internally (in the spreadsheet).
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Rotational Speed

The pivotal variable in our solution is the propeller’s (or gear output shaft’s) rotational 
speed n (see chapter Basic Solution). Eventually the drive’s behavior can be described 
over a whole  flight speed  v range from “static” (zero speed) to “pitch speed” (zero 
thrust). So rotational speed n is the first variable to consider over this flight speed v 
range for our example drive, particularly in the full-power case:
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The drive’s behavior is mainly determined by the propeller. The example propeller’s 
coefficient curves had been smoothened by applying second-order (quadratic) poly-
nomials. Now every drive variable has been calculated twice, from the original and 
from the smoothened coefficient curves. In the diagrams, the smoothened curves are 
thinner and darker than the original ones. They give a clue if the warps in the lower 
speed range (below about 12 m/s) actually have any effect.

While this is useful for an example, coefficient curves which are inverted parabolas 
are not typical but a peculiarity of the “cheap” example propeller (see chapter Propel-
ler Illustration). Hence all curves in the following diagrams are not typical as well in 
terms of their shape. The “better” propellers considered by way of comparison will be 
considered again later in this chapter to illustrate the differences.

The basic course of the curves  is typical, though. Rotational speed  n increases pro-
gressively with increasing flight speed v. For comparison, the propeller’s advance ratio 
J and the induced advance ratio Ji as well as their sum J+Ji have been included in the 
diagram. The latter looks like a mirror of the rotational speed curve, having the same 
warps in the opposite direction and opposite curvature.

The induced advance ratio Ji is an abstract measure of the thrust produced by the pro-
peller.  From the static  maximum (zero flight  speed),  it  decreases degressively.  It 
stands to reason that rotational speed increases with less thrust, meaning less torque 
needed to spin the propeller. As a result, the advance ratio J increases degressively.
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The amount of rotational-speed increase – colloquially called “unloading” –  is even an 
aspect of practical value in this consideration. Best climb speed and maximum level-
flight speed are known from the performance calculations. Zero-thrust speed – collo-
quially called “pitch speed” – results from the drive calculations. These three speeds 
have been highlighted in the diagram by vertical lines.

From “static” (zero flight speed), the propeller’s rotational speed increases noticeably:

“static” 6800 rpm 100%

climb 7320 rpm 108%

max. level speed 8065 rpm 119%

“pitch speed” 9615 rpm 141%

However, “pitch speed” has no practical value because it can be reached only in a 
steep dive. At the barely practical maximum level-flight speed, the “unload” is only 
19%. And at best climb speed, which is actually flown at full power, the “unload” is 
not more than 8%. That is even quite much.

From the Motor/Gear Illustration chapter (Basic Characteristics section) we know that 
a small, high-kV, and “cheap” drive (like this example drive) is more elastic than a big, 
low-kV, and “better” drive. That means its rotational speed n increases more with the 
same increase of flight speed v (and its advance ratio J increases more degressively).

When the drive is set to less than full power, all that should be basically the same. To 
see how the equivalent (to power setting) battery voltage Ub affects (“scales”)  the 
curves, the cruise-power case is added to the diagram:
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The induced advance ratio Ji is omitted and cruise speed and “pitch-speed” markings 
are added. Obviously, all curves are scaled horizontally (on the flight-speed axis) by 
0.604 (“pitch-speed” ratio). That is – not incidentally – only slightly more than the 0.6 
(exactly 0.595) voltage reduction factor (equivalent to 60% power setting).
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Vertically, the  rotational speed  n curve is scaled by 0.604 (same as horizontally) at 
the respective “pitch speed” but by 0.662 at zero flight speed (“static”). The explana-
tion is not obvious: In the equation for rotational speed n, full power and cruise power 
are represented by the respective equivalent battery voltage Ub in the polynomial con-
stant  K1 (stall torque) only. It is in the same term like the polynomial constant  K3 

(propeller torque) and the propeller’s power coefficient cP.

Shaft power is not proportional to rotational speed so in the “static” case the latter is 
relatively higher at cruise power than at full power. At “pitch speed”, the propeller’s 
power coefficient  cP is only 13% of the “static” value so the influence of propeller 
power on rotational speed is smaller and the influence of  K1 and hence  Ub prevails. 
The formulas for the two cases are meant to illustrate this:

ncruise ,static

n full, static =
K2 + √K2

2 + cP
static K3 K1

cruise

K 2 + √K 2
2 + cP

static K 3 K1
full

= 0.662

ncruise , pitch

nfull, pitch =
K2 + √K 2

2 + cP
pitch K3K 1

cruise

K 2 + √K 2
2 + cP

pitch K3 K1
full

= 0.604

Horizontal and vertical scaling are equal at the “pitch speed” point  – and any other 
point (advance ratio J) as well – for a simple reason: v = J⋅n⋅D – and J as well as D 
are the same or constant, respectively. The scaling factor  ncruise/nfull over the whole 
range is shown as a curve in the first diagram in this section. Like the J+Ji curve, it 
looks like a mirror of the rotational speed n curve. It makes for less “unloading” in the 
cruise-power case than in the full-power case.

Anyway, the advance-ratio curves are not scaled vertically because advance ratios are 
dimensionless and because the same set of propeller coefficients has been used for 
both the full-power and the cruise-power cases. The latter is also the reason why 
there are the same coefficients in the numerator and the denominator of the rota-
tional speed n scaling ratios (for instance the two formulas above).

Derived Variables

The same style of diagram like in the previous section is used in this section for vari-
ables derived from the basic solution: thrust, moment (torque), current (amperage), 
and the related powers as well  as efficiencies. This follows the order of derivation 
shown by the respective formulas in the Applied Solution section above.

There are the respective curves for the full-power and cruise-power cases. There are 
vertical  speed markings for cruise (8 m/s), climb (9.5 m/s), maximum level speed 
(15.5 m/s), as well as cruise-power and full-power “pitch speed” (14.3 / 23.7 m/s).

Thrust, moment (torque), and current (amperage) are shown together with their re-
lated powers in one diagram each. This way, possibly different scaling can be com-
pared, that is vertical  scaling. Obviously,  horizontal  scaling is always the same as 
what we have seen in the previous section: approximately by the 0.6 voltage reduc-
tion factor, or 60% power setting.

All three powers are repeated in an own diagram as well as the three efficiencies are 
repeated in an own, last diagram because they are ratios of these powers. So five dia-
grams show all derived variables, just for the sake of completeness.
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Thrust T is  proportional  to  rotational speed squared n2,  which  increases  with  flight 
speed v, and the thrust coefficient cT, which decreases. In any case, thrust decreases 
but it may decrease progressively – like in this case – or linearly or even degressively.

As  mentioned  in  the  Propeller  Illustration  chapter  (Propeller Diagram section),  we 
know that static thrust really is like calculated and not like the smoothened curve 
suggests. How the curve really runs between zero and about 9 m/s flight speed (or 
6 m/s at cruise power) is not known, though, so the calculated curve is  not typical. 
Typical would be kind of an inverted parabola.

More important, the second part above 9 m/s (or 6 m/s) would be typically a straight 
line. This is the case if the propeller coefficients are calculated with JavaProp and the 
propeller is a “better” one without blade stall in the higher speed range. However, this 
“cheap” propeller is without blade stall only between about 9 m/s and 11 m/s at full 
power or 6.5 m/s and 7 m/s at cruise power. The dashed lines show how thrust might 
run linearly if there would be no blade stall. Cruise and climb speed are in or close to 
the respective stall-free speed ranges.

Thrust power Pthrust is thrust times flight speed, hence it is zero at zero flight speed 
(“static”) and at zero thrust (“pitch speed”). The curve is an inverted parabola, some-
what skewed because thrust runs non-linear. The warps in the thrust coefficient  cT 

curve are hardly transferred to the thrust-power curve because they are in the low 
flight-speed range and hence marginalized by the thrust-times-speed multiplication.

In the full-power case, best climb speed (9.5 m/s) is lower than the speed of maxi-
mum thrust-power (12.5 m/s)  – typical for model airplanes. Cruise speed (8 m/s) 
being equal  to or slightly  higher than the speed of  maximum thrust-power in the 
cruise-power case is typical as well. And maximum level speed (15.5 m/s) is always 
higher than the speed of maximum thrust-power (12.5 m/s) in the full-power case.

Static thrust is scaled down from full-power to cruise-power by factor 0.439 what is 
0.662 squared. That is because static rotational speed is scaled by factor 0.662 and 
thrust is proportional to rotational speed squared.
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Moment M (torque) is – as well as thrust T – proportional to rotational speed squared 
n2, which increases with flight speed v, and the power coefficient cP, which decreases. 
In any case, torque decreases progressively.

From the Propeller Illustration chapter (Propeller Diagram section) we know that static 
torque really is like calculated and like the smoothened curve suggests. How the curve 
really runs between zero and about 12 m/s flight speed is still not known, though. It 
may be like the smoothened curve or there may be some smaller warps than in the 
calculated curve.

Mechanical power Pmech is also called shaft power and is torque times rotational speed 
(and 2π) so it is proportional to rotational speed cubed n3, which increases with flight 
speed v. That makes the warps in the shaft-power curve smaller than in the torque 
curve. Shaft power always decreases progressively.

Both torque M and shaft power Pmech are not zero at “pitch speed” (zero thrust) be-
cause the propeller still needs a noticeable amount of torque to spin at the quite high 
rotational speed there.

“Static”, torque is scaled down from full-power to cruise-power by factor 0.439 what is 
0.662  squared,  and  rotational  speed  is  scaled  by  factor  0.662.  At  “pitch  speed”, 
torque is scaled down by factor 0.365 what is 0.604 squared, and rotational speed is 
scaled by factor 0.604. Torque is proportional to rotational speed squared.

“Static”, shaft power is scaled down from full-power to cruise-power by factor 0.291 
what is 0.662 cubed, and rotational speed is scaled by factor 0.662. At “pitch speed”, 
shaft power is scaled down by factor 0.220 what is 0.604 cubed, and rotational speed 
is scaled by factor 0.604. Shaft power is proportional to rotational speed cubed.
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Current I (amperage) is  – other than thrust T and torque M – inversely proportional 
to rotational speed n, which increases with flight speed v. Still, amperage decreases 
progressively  in  the  same way torque does.  The warps in  the  power coefficient cP 

curve are transferred to the amperage curve via rotational speed n.

Electrical power Pel is simply amperage times (equivalent) battery voltage, which is 
constant. Hence the curve’s shape is the same as the amperage curve’s – the warps 
as well as the progressive decrease.

Both amperage I and electrical power Pel are not zero at “pitch speed” (zero thrust) for 
the same reason as torque M and shaft power Pmech: because the propeller still needs 
a noticeable amount of torque – and hence amperage – to spin at the quite high rota-
tional speed there.

“Static”, amperage is scaled down from full-power to cruise-power by factor 0.485 
while rotational speed is scaled by factor 0.662. At “pitch speed”, amperage is scaled 
down by factor 0.529 while rotational speed is scaled by factor 0.604. Amperage is 
inversely proportional to rotational speed so its “pitch speed” scaling factor is higher 
than its “static” scaling factor. Equivalent battery voltage  Ub is a constant term not 
only in the rotational speed formula but in the amperage formula as well. So it acts 
twice in the scaling factors, as it were, and makes them smaller here.

“Static”,  electrical  power is  scaled down from full-power to cruise-power by factor 
0.288, while rotational speed is scaled by factor 0.662. At “pitch speed”, electrical 
power is scaled down by factor 0.315, while rotational speed is scaled by factor 0.604. 
Since electrical power is amperage times equivalent battery voltage, its scaling factors 
are the respective amperage scaling factors times the 0.595 voltage reduction factor.

Static amperage and voltage, so power as well, could be (and have been) measured. 
This calculation predicts 8.5 A and 72 W. The first value is useful for selecting an ESC 
and the second, colloquially called “power in”, is used as an approximate indication 
whether the drive is powerful enough for the airplane.
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Electrical, mechanical, and thrust power together illustrate the losses of power from 
the battery to the propeller, as it were. Which portion of the respective initial power is 
not lost, though, is hard to tell from this diagram so these ratios, called efficiencies, 
are explicitly shown in the next diagram.

Here, it is worth noting that the usable full-power speed range from best climb speed 
to  maximum level  speed  is  the  range  of  maximum thrust-power.  In  this  range, 
mechanical  as  well  as  electrical  power  decrease  when  speed  increases  hence  all 
efficiencies increase. This is typical for the full-power case and actually intended to 
have maximum thrust power even accepting less-than-maximum efficiency.

Then again, cruise speed is about equal to the speed of maximum thrust-power at 
cruise-power.  Because  thrust  power  decreases  at  lower  and  higher  speeds,  total 
efficiency is definitely lower at lower speeds and tends to be lower at higher speeds. 
This is typical for the cruise-power case. This is again intentional design or at least a 
happy chance, respectively.

Cruise power has been chosen so the airplane flies as slow – and economically  – as 
possible but still has some speed stability. More cruise power would scale the power 
curves to higher power as well as higher speed so that cruise speed will still  roughly 
coincide  with  maximum  thrust-power  speed.  Put  another  way,  cruise  speed  will 
roughly coincide with maximum thrust-power speed in level flight, regardless of power 
setting (even up to full-power). Hence it is typical for level flight that total efficiency is 
close to its maximum.

The warps in the power curves stem from the propeller’s power-coefficient curve. This 
diagram shows that these warps are not relevant: They occur only in the speed range 
below the  usable  speed  range  and  the  calculated  power  values  are  even  correct 
“statically”, at zero flight speed. Taken with a grain of salt, this can be seen as typical.
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The motor/gear combination’s efficiency ηm/g curve over the whole  rotational speed n 
range is  an  inverted  parabola  skewed to  the  right.  Over  the  whole  flight speed v 
range,  rotational speed  increases  progressively  from 64% of  idle speed  “static”  to 
76% at “pitch speed”. This cuts a small part (12%) of the original efficiency curve 
including the maximum and makes the cutout’s left part progressively increasing.

The propeller’s efficiency ηp curve over the whole advance ratio J range is an inverted 
parabola skewed to the right, too. Over the whole flight-speed v range, the advance 
ratio  increases  degressively  from  “static”  to  “pitch  speed”  so  the  whole  original 
efficiency curve is somewhat skewed to the left, lessening its right-skew.

Total drive-efficiency η is the product of the two other efficiencies. So the curve is a 
scaled-down propeller efficiency curve with the scaling factor (motor/gear efficiency) 
not quite constant. At full-power, this factor increasing to the right skews the curve 
slightly to the right so maximum drive efficiency occurs at higher flight-speed than 
maximum propeller efficiency. At cruise-power, motor/gear efficiency is almost con-
stant so propeller efficiency and drive efficiency are close to their respective maximum 
at about the same flight speed.

Both propeller-efficiency ηp curves (for cruise-power and full-power) are merely hori-
zontally scaled but not vertically because no different coefficient curves have been (or 
even could have been) calculated (see Propeller Illustration chapter), hence they have 
the same maximum.

The two motor/gear-efficiency ηm/g curves are vertically scaled by equivalent battery 
voltage. The curves seem to coincide in the low speed range, though, so it looks like 
this efficiency being dependent on flight speed but not on power setting in level flight.

Hence the total drive-efficiency η curves are slightly scaled vertically, maximum effi-
ciency being slightly higher at full power (due to higher equivalent battery voltage). 
But at climb speed, efficiency is even lower than at cruise speed because the propeller 
is more loaded. This is typical for most of all drives.
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Drive Comparison

While three motor/gear combinations and the three corresponding propellers have 
been separately  compared  in  the  previous  two  chapters,  they  are  now compared 
together as complete drives. Basic specifications of models and drives are repeated 
here and the respective basic drive characteristics for the full-power case are added:

Type of model 55" retro parkflyer 100" thermal glider 95" Sr. Telemaster

Weight W 0.85 kg / 1.9 lbs 1.7 kg / 3.75 lbs 4.5 kg / 10 lbs

Wing loading 32 g/dm2 / 11 oz/ft2 38 g/dm2 / 13 oz/ft2 53 g/dm2 / 18 oz/ft2

Motor 400-size “can” 480-size premium 4130 brushless

Gear ratio ig ‒ ηg 2.3:1 ‒ 89% 4.4:1 ‒ 95% no gear ‒ 100%

Motor / Drive  kV 3000 / 1300 rpm/V 3440 / 780 rpm/V 360 / 360 rpm/V

Propeller 6.9x6.3" toy prop CAM-Carbon 14x8 APC 17x12 E

Battery (voltage) 7s 1000 NiCd (8.4 V) 7s 2300 NiCd (8.4 V) 4s 5000 LiPo (14.8 V)

Static:

power “in” Pel 70 W (8.3 A) 150 W (18 A) 500 W (35 A)

Power/Weight 82 W/kg  / 37 W/lb 88 W/kg  / 40 W/lb 111 W/kg  / 50 W/lb

thrust T 2 N / 0.46 lbf 8.5 N / 1.9 lbf 17 N / 3.8 lbf

Thrust/Weight 0.24 0.51 0.38

Speeds:

“pitch speed” 23.7 m/s  / 100% 25.5 m/s  / 100% 38.5 m/s  / 100%

maximum level 15.5 m/s  /   65% 21.0 m/s  /   82% 24.3 m/s  /   63%

climb   9.5 m/s  /   40% 13.4 m/s  /   53% 15.0 m/s  /   39%

climb rate / ratio   1.4 m/s  / 1:6.9   3.3 m/s  / 1:3.6   3.8 m/s  / 1:4.0

“Unloading”:

static 6800 rpm / 100% 4655 rpm / 100% 3885 rpm / 100%

climb 7320 rpm / 108% 4935 rpm / 106% 3910 rpm / 101%

max. level speed 8065 rpm / 119% 5630 rpm / 121% 4155 rpm / 107%

“pitch speed” 9640 rpm / 142% 6205 rpm / 133% 4885 rpm / 126%

Efficiencies:

climb/cruise/max. 28% / 32% /36% 49% / 48% / 53% 43% / 50% / 51%

cruise power           60%           46%           48%

From the parkflyer over the thermal glider to the Sr. Telemaster, the models’ size, 
weight, wing loading, and speed increase. Their respective drives are bigger, more 
powerful, and “better”. The latter means their efficiencies are noticeably higher, as 
specified in the comparison sections of the two previous chapters.
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There is also shown that overall efficiency is in a large part affected by the propeller’s 
power loading, which is especially low on the thermal glider. Consequently, and also 
due to its moderate-pitch propeller, it has the highest thrust/weight ratio despite a 
rather low power/weight ratio. Maximum level speed and climb speed come rather 
close to “pitch speed”, and the airplane does a steep climb. At maximum level speed, 
the  drive  “unloads”  especially  much  because  the  airplane  is  sleek  and  gets  fast. 
Efficiency is higher in climb than in cruise and is close to maximum, which is rather 
high – the drive, especially the propeller, is optimal for climb.

The parkflyer and the Sr. Telemaster have several things in common, despite their dif-
ferent sizes and weights. Both are – relative to their sizes – low-wing-loading, slow-
flying,  and  draggy  airplanes,  and  their  drives  are  optimal  for  cruise.  Their  climb 
speeds and even their maximum level speeds are substantially lower than their “pitch 
speeds”. The parkflyer’s drive is just so “cheap” (inefficient) and weak (see its cruise 
power setting) that it noticeably “unloads”, and the airplane manages merely a mild 
climb. Then again, the Sr. Telemaster’s drive is “better” (rather efficient) and strong 
so it “unloads” little and the airplane does a rather steep climb.

For better illustration, some characteristics need to be shown in diagrams. For all 
three example drives, the propeller coefficients have been calculated with JavaProp. 
Curiously, the resulting thrust coefficient cT curves are straight where no blade stall is 
predicted, that is at higher advance ratios J. In the drive calculations, this translates 
into a just as straight part of the thrust T curve where no blade stall occurs, that is at 
corresponding  higher  flight speeds v.  This  is  a  distinctive  characteristic  of  electric 
drives. In the following diagram, the straight parts of the actual thrust curves are 
overlaid with thinner and darker straight lines. They show which values of static thrust 
and “pitch speed” could be expected if there were no blade stall at all:
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The “cheap” example drive (parkflyer) is without blade stall only between about 9 m/s 
and  11 m/s  at  full  power,  the  “better”  drives  (thermal glider  and  Sr. Telemaster) 
above about 10 m/s or 15 m/s up to their “pitch speed”, respectively.
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The first and second examples (parkflyer, thermal glider) have nearly the same “pitch 
speed” but very different static thrust. The parkflyer drive is quite elastic, meaning 
flight speed decreases substantially if more thrust is needed. That is because it has a 
high  specific rotational speed kV (1300 rpm/V)  making  up  for  the  propeller’s  small 
pitch (6.3 in) and because it is a small and “cheap” drive. The thermal-glider drive has 
a bit more pitch (8 in) but lower specific rotational speed kV (780 rpm/V) and is bigger 
and “better” so it is less elastic, or more rigid. The Sr. Telemaster drive is “better” as 
well, has even more pitch (12 in) as well as higher battery voltage but an even lower 
specific rotational speed kV (360 rpm/V) so it is even more rigid. It is much bigger and 
more powerful so it goes to substantially higher thrust and higher flight speeds.

The rotational speed n curves begin with a more or less straight and constant part 
where blade stall occurs. It is followed by a parabolic increase over flight speed v. The 
lower specific rotational speed kV and the bigger and “better” the drive, the smaller is 
the following increase (“unloading”)   – another characteristic of electric drives. Yet 
climb speed is always so low that little or no “unload” occurs. Maximum level speed or 
even “pitch speed”, making for noticeable “unload”, are not actually flown in practice.

Corresponding to the rotational speed n curves, the current I (amperage) curves begin 
with a more or less straight and constant part, here followed by an inverted parabola. 
Hence it is safe to assume that “static” amperage is never exceeded in flight, at least 
not significantly. Basically, it can be used as a criterion to choose a suitable ESC but 
only if maximum battery voltage is considered (for instance 4.2 V end-of-charge cell 
voltage for LiPo) instead of nominal voltage (3.7 V) like here. And the ESC must stand 
this amperage for some time because only slightly less is drawn during climb:
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Electrical power Pel is amperage times battery voltage, which is constant. The park-
flyer’s as well as the thermal glider’s drive have 8.4 V batteries. Their power curves 
happen to be drawn below their respective amperage curves due to the scaling of the 
two axes. Then again, the Sr. Telemaster’s drive has a 14.8 V battery so its power 
curve is drawn well above its amperage curve.
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As an exception, drive efficiencies η are shown for full-power as well as cruise-power 
settings (specified in the table above). Efficiencies are lower at cruise-power due to 
lower motor efficiency ηm at lower voltage, but the “better” the motor is the smaller is 
the difference:
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The parkflyer’s drive is inefficient overall and its cruise-power efficiency would be even 
lower if it would not need a high power-setting (60%). By way of contrast, the ther-
mal glider’s drive is “better” but needs a low cruise-power setting (46%), which would 
be even lower if it would not be needed for flight speed with the moderate-pitch pro-
peller. The Sr. Telemaster’s drive is even “better” but its propeller’s power loading is 
higher so its full-power peak efficiency is even lower than the thermal glider’s.

As mentioned above, the parkflyer’s and the Sr. Telemaster’s drives are optimal for 
cruise flight. That means their drive efficiencies are close to or at peak, respectively, 
in cruise. In climb, though, they are far from peak and substantially lower than in 
cruise. Only at maximum level speed are their drive efficiencies at peak value, what is 
useless. By way of contrast, the thermal glider’s drive is optimal for climb. There, its 
efficiency is closer to peak value and even nearly as high as the peak efficiency of the 
Sr. Telemaster’s  drive.  Both  its  cruise speed  and  maximum level speed  are  higher 
than the respective speed of peak efficiency, though, so both efficiencies are lower.

Propeller Coefficient Comparison

In the Propeller Illustration chapter, Coefficient Comparison section, different sets of 
coefficients for the Sr. Telemaster’s APC 17x12 E propeller are compared. Here, each 
set is  used for  a  drive calculation  and the  results  are  again  compared.  The con-
sideration starts with the set of coefficients that had been calculated with  JavaProp 
especially for the comparison. This case is actually known from the comparison in the 
previous chapter, so two variations of battery Voltage Ub have been added:
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The first voltage variation is cruise-power setting, in this case 51% meaning 7.5 V 
equivalent battery voltage. The scaling of both the rotational speed n and the thrust T 
curves, that is their ends, is known from the main (first) example, but this (third) 
example explicitly shows that the whole thrust curve, including its straight part, is 
scaled so that the drive is slightly more elastic in cruise.

The second variation is assuming the battery is still at the beginning of discharge so 
cell voltage is 4.0 V and the 4S battery voltage is 16.0 V, equivalent to a 108% power 
setting (3.7 V nominal LiPo cell voltage defined to be 100%). This state of charge is 
reached after take-off with a fully charged battery and about half a minute of climb. 
Best climb speed v is slightly increased then, as is rotational speed n, but thrust T is 
over-proportionally increased. That means climb is noticeably more vigorous with a 
full battery.

Often, there are some warps in coefficient curves calculated with JavaProp, both the 
thrust coefficient cT and the power coefficient cP curves. By way of the drive calcula-
tions, these warps translate into mirror-inverted warps in the rotational speed n curve 
and corresponding warps in the thrust T curve. These warps occur only in the low 
advance ratio J and flight speed v ranges, respectively, where serious blade stall  is 
predicted and the calculations are not reliable. Static thrust and rotational speed seem 
to be reliable in any case, though.
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The calculation tool used by APC to compute propeller coefficients is considered as 
better than JavaProp. Still it yields similar thrust coefficient cT curves with a straight 
part at higher advance ratios J where no blade stall is predicted. By way of the drive 
calculations, this as well translates into a straight part of the thrust T curve at corre-
sponding higher flight speeds v. There are no warps in the low v range, though, just 
some waviness because the published coefficient values have only three digits.

The power coefficient cP curves have a peculiarly increasing first part. It translates into 
a slightly decreasing first part of the rotational speed n curve, followed by the usual 
mild parabolic increase to maximum. Again there are no warps, just waviness.
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The propeller coefficients measured in a wind tunnel (at UIUC) result in coefficient 
curves with four distinct parts, each with its own slope and curvature. This seems to 
be a peculiarity of the APC Electric propellers since – for instance – coefficient curves 
for APC Sport propellers are less complex (see page 45 above).

Remarkably, the thrust T curve increases substantially  from static  thrust,  perhaps 
because serious blade stall vanishes and the propeller has more and more “grip” in 
the air. Correspondingly, the rotational speed n curve slightly increases linearly.

Both curves’ second part is as usual, meaning like seen before (JavaProp, APC calcu-
lations). The thrust curve resembles an inverted parabola and the rotational-speed 
curve is a horizontal straight line.

The curves’ third part is as usual as well, now meaning the thrust curve is straight and 
the rotational-speed curve resembles a parabola. This is the part where the propeller 
coefficients are sensitive to rotational speed or Reynolds number, respectively. Propel-
ler efficiency is close to maximum in this range, and horizontal flight speed is in this 
range,  regardless  of  power  setting.  Hence this  part  of  the thrust  curve  has been 
chosen as the straight part (see overlaid thinner and darker line) and because it is the 
least elastic one.

The thrust curve’s fourth part seems to be straight as well but has less slope, that is it 
is more elastic. That is unusual, as well as the rotational-speed curve which seems to 
be straight here.
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Finally, the three calculations are combined in one diagram and the cruise-power case 
is added to the full-power case. This puts the differences into perspective.

The full-power thrust T curves differ most. They intersect at speeds higher than climb 
speed, where JavaProp predicts less thrust than the other two calculations. The three 
curves’ slope (elasticity) is similar at this speed. The measured coefficients make for 
the steepest slope,  JavaProp for the most elastic  in their  respective characteristic 
flight speed range (see the overlaid thinner and darker lines). Anyway, climb speed is 
nearly equal in the three calculations and the thrust differences are comparatively 
small there and at slightly higher speeds. Even higher speeds (maximum level speed 
and “pitch speed”) where the differences are bigger are not relevant in practice.

The cruise-power  thrust T curves  differ  as  well  but  they  intentionally  intersect  at 
cruise speed, which was chosen to be 12 m/s in  all  three calculations.  Hence the 
airframe’s drag as well as the drive’s thrust are equal, respectively.

The  rotational speed n curves differ only slightly, curiously the cruise-power curves 
more than the full-power curves.

Compared to the difference between 3.7 V and 4.0 V cell voltage (the operational volt-
age  range)  shown  three  pages  above,  even  the  full-power thrust  differences  are 
smaller. At climb speed, JavaProp underestimates thrust compared to the better tool 
used by APC or even wind-tunnel measurements, all based on the lowest operational 
battery voltage. So we have a conservative estimate: If the calculated thrust is suffi-
cient for the airplane then real thrust will be even more so.
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The three calculations are again combined in one diagram to compare amperages and 
efficiencies, this time for full power only. A variation of the JavaProp case is added: 
the battery at 4.0 V cell voltage instead of 3.7 V (like four pages above).

While the wind tunnel measurements and the APC calculations are close to each other, 
JavaProp makes for the highest amperage. Again the differences between the three 
cases are smaller than the difference between charged and discharged battery. Since 
JavaProp overestimates amperage we have again a conservative estimate, usable to 
choose a suitable ESC if 4.0 V or even 4.2 V cell voltage is assumed in the calculation.

Best climb speed is  nearly the same in  all  three cases but slightly  higher with a 
charged battery. Total drive efficiency in climb is virtually the same in the wind tunnel 
and APC cases but substantially lower in the JavaProp case (even a bit lower with a 
charged battery). That is expectable – since thrust is lowest and amperage highest – 
and just another conservative estimate.

The APC calculations  overestimate efficiency and corresponding flight speed at  the 
same time while JavaProp overestimates flight speed only (each case compared to the 
wind tunnel case as reference). Then again, the difference between the curves for the 
two battery voltages is a characteristic of electric drives and correctly estimated.

This comparison suggests that the drive calculations are “on the safe side”, regardless 
how “good” the propeller coefficients used for them really are.

Still the results don’t necessarily match the real values. These drive calculations are 
not calibrated, or “tweaked” to some values measured on the real drive, from which 
they may differ more than from each other. Yet they are usable even without calibra-
tion, what has been validated by telemetry measurements.
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To be continued...
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Workflow

Spreadsheet Sequence

There are three modules of calculation, each in one of three interlinked spreadsheets:

1. Electrical characteristics of motor, speed controller, battery, cables, and plugs;
as well as mechanical characteristics of motor and gear.

2. Aerodynamic and mechanical characteristics of the propeller.

3. Characteristics of the whole drive dependent on flight speed.

And there are another three, optional interlinked modules/spreadsheets:

4. Aerodynamic characteristics (coefficients) of the wing airfoil.

5. Aerodynamic characteristics of the whole airframe.

6. Performance characteristics of the airplane dependent on flight speed.

The former suffice to find a suitable drive or to compare different drives for a model.  
The drive characteristics are calculated for two cases: full power and cruise power. 
The latter not only show the performance characteristics of the whole airplane but 
thereby also help finding a suitable cruise power for the former.

It's typical to begin a complete calculation with nominal values specified by manufac-
turers or even with estimates and then gradually refine it by tweaking parameters 
until it is consistent.  Basically, it can be calibrated with measured values. These may 
be  published by component  manufacturers,  so  the  calculation  is  calibrated  to  the 
specific type of component. If the drive is already at hand, it can be measured for a 
calibration to the specific component samples, at first static for a safe maiden flight 
and finally in-flight just to be sure.

The spreadsheets are in one single file in the  Microsoft® Office® Excel® XLS format, 
which should work in LibreOffice Calc as well (which has its own ODS format).

Example

A prototypical example is the drive of the author’s  Senior Telemaster  Plus model air-
plane (the third drive in the comparisons). The calculation spreadsheets are available 
for download from the author’s Web site. In this archive are several, slightly different 
calculations, especially one with propeller coefficients calculated by the manufacturer 
APC and one with coefficients measured by Brandt and Selig at UIUC. See the author’s 
downloads page for more drive calculations.

There  is  also  a comprehensive  explanation of  the  calculation  results  – both  flight 
performance and  drive characteristics – on the author’s  review Web page for  the 
Senior Telemaster Plus model airplane.

To be continued...
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